Changes in / [aa7dc64:0c968a17] in mainline
- Files:
-
- 3 deleted
- 37 edited
Legend:
- Unmodified
- Added
- Removed
-
kernel/arch/mips32/src/mm/tlb.c
raa7dc64 r0c968a17 557 557 entry_hi_t hi, hi_save; 558 558 tlb_index_t index; 559 560 ASSERT(asid != ASID_INVALID); 559 560 if (asid == ASID_INVALID) 561 return; 561 562 562 563 hi_save.value = cp0_entry_hi_read(); -
kernel/generic/include/mm/as.h
raa7dc64 r0c968a17 115 115 116 116 /** 117 * Number of processors on wich is this address space active. 118 * Protected by asidlock. 117 * Number of processors on which this 118 * address space is active. Protected by 119 * asidlock. 119 120 */ 120 121 size_t cpu_refcount; 121 122 122 /** 123 * Address space identifier. 124 * Constant on architectures that do not support ASIDs. 125 * Protected by asidlock. 123 /** Address space identifier. 124 * 125 * Constant on architectures that do not 126 * support ASIDs. Protected by asidlock. 127 * 126 128 */ 127 129 asid_t asid; 128 130 129 /** Number of references (i.e tasks that reference this as). */131 /** Number of references (i.e. tasks that reference this as). */ 130 132 atomic_t refcount; 131 133 … … 199 201 typedef struct { 200 202 mutex_t lock; 203 201 204 /** Containing address space. */ 202 205 as_t *as; 203 206 204 /** 205 * Flags related to the memory represented by the address space area. 206 */ 207 /** Memory flags. */ 207 208 unsigned int flags; 208 209 209 /** A ttributes related to the address space area itself. */210 /** Address space area attributes. */ 210 211 unsigned int attributes; 211 /** Size of this area in multiples of PAGE_SIZE. */ 212 213 /** Number of pages in the area. */ 212 214 size_t pages; 215 216 /** Number of resident pages in the area. */ 217 size_t resident; 218 213 219 /** Base address of this area. */ 214 220 uintptr_t base; 221 215 222 /** Map of used space. */ 216 223 btree_t used_space; 217 224 218 225 /** 219 * If the address space area has been shared, this pointer will220 * referencethe share info structure.226 * If the address space area is shared. this is 227 * a reference to the share info structure. 221 228 */ 222 229 share_info_t *sh_info; … … 261 268 extern bool as_area_check_access(as_area_t *, pf_access_t); 262 269 extern size_t as_area_get_size(uintptr_t); 263 extern int used_space_insert(as_area_t *, uintptr_t, size_t); 264 extern int used_space_remove(as_area_t *, uintptr_t, size_t); 265 270 extern bool used_space_insert(as_area_t *, uintptr_t, size_t); 271 extern bool used_space_remove(as_area_t *, uintptr_t, size_t); 266 272 267 273 /* Interface to be implemented by architectures. */ … … 307 313 extern sysarg_t sys_as_area_change_flags(uintptr_t, unsigned int); 308 314 extern sysarg_t sys_as_area_destroy(uintptr_t); 315 extern sysarg_t sys_as_get_unmapped_area(uintptr_t, size_t); 309 316 310 317 /* Introspection functions. */ -
kernel/generic/include/syscall/syscall.h
raa7dc64 r0c968a17 59 59 SYS_AS_AREA_CHANGE_FLAGS, 60 60 SYS_AS_AREA_DESTROY, 61 SYS_AS_GET_UNMAPPED_AREA, 61 62 62 63 SYS_IPC_CALL_SYNC_FAST, -
kernel/generic/src/mm/as.c
raa7dc64 r0c968a17 71 71 #include <memstr.h> 72 72 #include <macros.h> 73 #include <bitops.h> 73 74 #include <arch.h> 74 75 #include <errno.h> … … 86 87 * Each architecture decides what functions will be used to carry out 87 88 * address space operations such as creating or locking page tables. 88 *89 89 */ 90 90 as_operations_t *as_operations = NULL; 91 91 92 /** 93 * Slab for as_t objects. 92 /** Slab for as_t objects. 94 93 * 95 94 */ 96 95 static slab_cache_t *as_slab; 97 96 98 /** 99 * This lock serializes access to the ASID subsystem.100 * Itprotects:97 /** ASID subsystem lock. 98 * 99 * This lock protects: 101 100 * - inactive_as_with_asid_head list 102 101 * - as->asid for each as of the as_t type … … 107 106 108 107 /** 109 * This list contains address spaces that are not active on any 110 * processor and that have valid ASID. 111 * 108 * Inactive address spaces (on all processors) 109 * that have valid ASID. 112 110 */ 113 111 LIST_INITIALIZE(inactive_as_with_asid_head); … … 123 121 mutex_initialize(&as->lock, MUTEX_PASSIVE); 124 122 125 int rc = as_constructor_arch(as, flags); 126 127 return rc; 123 return as_constructor_arch(as, flags); 128 124 } 129 125 130 126 NO_TRACE static size_t as_destructor(void *obj) 131 127 { 132 as_t *as = (as_t *) obj; 133 return as_destructor_arch(as); 128 return as_destructor_arch((as_t *) obj); 134 129 } 135 130 … … 146 141 panic("Cannot create kernel address space."); 147 142 148 /* Make sure the kernel address space 143 /* 144 * Make sure the kernel address space 149 145 * reference count never drops to zero. 150 146 */ … … 195 191 { 196 192 DEADLOCK_PROBE_INIT(p_asidlock); 197 193 198 194 ASSERT(as != AS); 199 195 ASSERT(atomic_get(&as->refcount) == 0); … … 203 199 * lock its mutex. 204 200 */ 205 201 206 202 /* 207 203 * We need to avoid deadlock between TLB shootdown and asidlock. … … 210 206 * disabled to prevent nested context switches. We also depend on the 211 207 * fact that so far no spinlocks are held. 212 *213 208 */ 214 209 preemption_disable(); … … 235 230 spinlock_unlock(&asidlock); 236 231 interrupts_restore(ipl); 237 232 238 233 239 234 /* … … 241 236 * The B+tree must be walked carefully because it is 242 237 * also being destroyed. 243 *244 238 */ 245 239 bool cond = true; … … 268 262 /** Hold a reference to an address space. 269 263 * 270 * Holding a reference to an address space prevents destruction of that address271 * space.264 * Holding a reference to an address space prevents destruction 265 * of that address space. 272 266 * 273 267 * @param as Address space to be held. … … 281 275 /** Release a reference to an address space. 282 276 * 283 * The last one to release a reference to an address space destroys the address284 * space.277 * The last one to release a reference to an address space 278 * destroys the address space. 285 279 * 286 280 * @param asAddress space to be released. … … 295 289 /** Check area conflicts with other areas. 296 290 * 297 * @param as 298 * @param vaStarting virtual address of the area being tested.299 * @param size Size ofthe area being tested.300 * @param avoid _areaDo not touch this area.291 * @param as Address space. 292 * @param addr Starting virtual address of the area being tested. 293 * @param count Number of pages in the area being tested. 294 * @param avoid Do not touch this area. 301 295 * 302 296 * @return True if there is no conflict, false otherwise. 303 297 * 304 298 */ 305 NO_TRACE static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, 306 as_area_t *avoid_area) 307 { 299 NO_TRACE static bool check_area_conflicts(as_t *as, uintptr_t addr, 300 size_t count, as_area_t *avoid) 301 { 302 ASSERT((addr % PAGE_SIZE) == 0); 308 303 ASSERT(mutex_locked(&as->lock)); 309 304 310 305 /* 311 306 * We don't want any area to have conflicts with NULL page. 312 * 313 */ 314 if (overlaps(va, size, (uintptr_t) NULL, PAGE_SIZE)) 307 */ 308 if (overlaps(addr, count << PAGE_WIDTH, (uintptr_t) NULL, PAGE_SIZE)) 315 309 return false; 316 310 … … 321 315 * record in the left neighbour, the leftmost record in the right 322 316 * neighbour and all records in the leaf node itself. 323 *324 317 */ 325 318 btree_node_t *leaf; 326 319 as_area_t *area = 327 (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);320 (as_area_t *) btree_search(&as->as_area_btree, addr, &leaf); 328 321 if (area) { 329 if (area != avoid _area)322 if (area != avoid) 330 323 return false; 331 324 } … … 337 330 area = (as_area_t *) node->value[node->keys - 1]; 338 331 339 mutex_lock(&area->lock); 340 341 if (overlaps(va, size, area->base, area->pages * PAGE_SIZE)) { 332 if (area != avoid) { 333 mutex_lock(&area->lock); 334 335 if (overlaps(addr, count << PAGE_WIDTH, 336 area->base, area->pages << PAGE_WIDTH)) { 337 mutex_unlock(&area->lock); 338 return false; 339 } 340 342 341 mutex_unlock(&area->lock); 343 return false; 344 } 345 346 mutex_unlock(&area->lock); 342 } 347 343 } 348 344 … … 351 347 area = (as_area_t *) node->value[0]; 352 348 353 mutex_lock(&area->lock); 354 355 if (overlaps(va, size, area->base, area->pages * PAGE_SIZE)) { 349 if (area != avoid) { 350 mutex_lock(&area->lock); 351 352 if (overlaps(addr, count << PAGE_WIDTH, 353 area->base, area->pages << PAGE_WIDTH)) { 354 mutex_unlock(&area->lock); 355 return false; 356 } 357 356 358 mutex_unlock(&area->lock); 357 return false; 358 } 359 360 mutex_unlock(&area->lock); 359 } 361 360 } 362 361 … … 366 365 area = (as_area_t *) leaf->value[i]; 367 366 368 if (area == avoid _area)367 if (area == avoid) 369 368 continue; 370 369 371 370 mutex_lock(&area->lock); 372 371 373 if (overlaps(va, size, area->base, area->pages * PAGE_SIZE)) { 372 if (overlaps(addr, count << PAGE_WIDTH, 373 area->base, area->pages << PAGE_WIDTH)) { 374 374 mutex_unlock(&area->lock); 375 375 return false; … … 382 382 * So far, the area does not conflict with other areas. 383 383 * Check if it doesn't conflict with kernel address space. 384 *385 384 */ 386 385 if (!KERNEL_ADDRESS_SPACE_SHADOWED) { 387 return !overlaps( va, size,386 return !overlaps(addr, count << PAGE_WIDTH, 388 387 KERNEL_ADDRESS_SPACE_START, 389 388 KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START); … … 412 411 mem_backend_data_t *backend_data) 413 412 { 414 if ( base % PAGE_SIZE)413 if ((base % PAGE_SIZE) != 0) 415 414 return NULL; 416 415 417 if ( !size)416 if (size == 0) 418 417 return NULL; 418 419 size_t pages = SIZE2FRAMES(size); 419 420 420 421 /* Writeable executable areas are not supported. */ … … 424 425 mutex_lock(&as->lock); 425 426 426 if (!check_area_conflicts(as, base, size, NULL)) {427 if (!check_area_conflicts(as, base, pages, NULL)) { 427 428 mutex_unlock(&as->lock); 428 429 return NULL; … … 436 437 area->flags = flags; 437 438 area->attributes = attrs; 438 area->pages = SIZE2FRAMES(size); 439 area->pages = pages; 440 area->resident = 0; 439 441 area->base = base; 440 442 area->sh_info = NULL; … … 479 481 * to find out whether this is a miss or va belongs to an address 480 482 * space area found there. 481 *482 483 */ 483 484 … … 490 491 mutex_lock(&area->lock); 491 492 492 if ((area->base <= va) && (va < area->base + area->pages * PAGE_SIZE)) 493 if ((area->base <= va) && 494 (va < area->base + (area->pages << PAGE_WIDTH))) 493 495 return area; 494 496 … … 499 501 * Second, locate the left neighbour and test its last record. 500 502 * Because of its position in the B+tree, it must have base < va. 501 *502 503 */ 503 504 btree_node_t *lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf); … … 507 508 mutex_lock(&area->lock); 508 509 509 if (va < area->base + area->pages * PAGE_SIZE)510 if (va < area->base + (area->pages << PAGE_WIDTH)) 510 511 return area; 511 512 … … 534 535 /* 535 536 * Locate the area. 536 *537 537 */ 538 538 as_area_t *area = find_area_and_lock(as, address); … … 546 546 * Remapping of address space areas associated 547 547 * with memory mapped devices is not supported. 548 *549 548 */ 550 549 mutex_unlock(&area->lock); … … 557 556 * Remapping of shared address space areas 558 557 * is not supported. 559 *560 558 */ 561 559 mutex_unlock(&area->lock); … … 568 566 /* 569 567 * Zero size address space areas are not allowed. 570 *571 568 */ 572 569 mutex_unlock(&area->lock); … … 576 573 577 574 if (pages < area->pages) { 578 uintptr_t start_free = area->base + pages * PAGE_SIZE;575 uintptr_t start_free = area->base + (pages << PAGE_WIDTH); 579 576 580 577 /* 581 578 * Shrinking the area. 582 579 * No need to check for overlaps. 583 *584 580 */ 585 581 … … 588 584 /* 589 585 * Start TLB shootdown sequence. 590 *591 586 */ 592 587 ipl_t ipl = tlb_shootdown_start(TLB_INVL_PAGES, as->asid, 593 area->base + pages * PAGE_SIZE, area->pages - pages);588 area->base + (pages << PAGE_WIDTH), area->pages - pages); 594 589 595 590 /* … … 599 594 * is also the right way to remove part of the used_space 600 595 * B+tree leaf list. 601 *602 596 */ 603 597 bool cond = true; … … 615 609 size_t i = 0; 616 610 617 if (overlaps(ptr, size * PAGE_SIZE, area->base,618 pages * PAGE_SIZE)) {611 if (overlaps(ptr, size << PAGE_WIDTH, area->base, 612 pages << PAGE_WIDTH)) { 619 613 620 if (ptr + size * PAGE_SIZE<= start_free) {614 if (ptr + (size << PAGE_WIDTH) <= start_free) { 621 615 /* 622 616 * The whole interval fits 623 617 * completely in the resized 624 618 * address space area. 625 *626 619 */ 627 620 break; … … 632 625 * to b and c overlaps with the resized 633 626 * address space area. 634 *635 627 */ 636 628 … … 652 644 for (; i < size; i++) { 653 645 pte_t *pte = page_mapping_find(as, ptr + 654 i * PAGE_SIZE);646 (i << PAGE_WIDTH)); 655 647 656 648 ASSERT(pte); … … 661 653 (area->backend->frame_free)) { 662 654 area->backend->frame_free(area, 663 ptr + i * PAGE_SIZE,655 ptr + (i << PAGE_WIDTH), 664 656 PTE_GET_FRAME(pte)); 665 657 } 666 658 667 659 page_mapping_remove(as, ptr + 668 i * PAGE_SIZE);660 (i << PAGE_WIDTH)); 669 661 } 670 662 } … … 673 665 /* 674 666 * Finish TLB shootdown sequence. 675 * 676 */ 677 678 tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE, 667 */ 668 669 tlb_invalidate_pages(as->asid, area->base + (pages << PAGE_WIDTH), 679 670 area->pages - pages); 680 671 681 672 /* 682 673 * Invalidate software translation caches (e.g. TSB on sparc64). 683 *684 674 */ 685 675 as_invalidate_translation_cache(as, area->base + 686 pages * PAGE_SIZE, area->pages - pages);676 (pages << PAGE_WIDTH), area->pages - pages); 687 677 tlb_shootdown_finalize(ipl); 688 678 … … 692 682 * Growing the area. 693 683 * Check for overlaps with other address space areas. 694 * 695 */ 696 if (!check_area_conflicts(as, address, pages * PAGE_SIZE, 697 area)) { 684 */ 685 if (!check_area_conflicts(as, address, pages, area)) { 698 686 mutex_unlock(&area->lock); 699 687 mutex_unlock(&as->lock); … … 794 782 795 783 for (size = 0; size < (size_t) node->value[i]; size++) { 796 pte_t *pte = page_mapping_find(as, ptr + size * PAGE_SIZE); 784 pte_t *pte = 785 page_mapping_find(as, ptr + (size << PAGE_WIDTH)); 797 786 798 787 ASSERT(pte); … … 803 792 (area->backend->frame_free)) { 804 793 area->backend->frame_free(area, 805 ptr + size * PAGE_SIZE, PTE_GET_FRAME(pte));794 ptr + (size << PAGE_WIDTH), PTE_GET_FRAME(pte)); 806 795 } 807 796 808 page_mapping_remove(as, ptr + size * PAGE_SIZE);797 page_mapping_remove(as, ptr + (size << PAGE_WIDTH)); 809 798 } 810 799 } … … 813 802 /* 814 803 * Finish TLB shootdown sequence. 815 *816 804 */ 817 805 … … 821 809 * Invalidate potential software translation caches (e.g. TSB on 822 810 * sparc64). 823 *824 811 */ 825 812 as_invalidate_translation_cache(as, area->base, area->pages); … … 839 826 /* 840 827 * Remove the empty area from address space. 841 *842 828 */ 843 829 btree_remove(&as->as_area_btree, base, NULL); … … 881 867 /* 882 868 * Could not find the source address space area. 883 *884 869 */ 885 870 mutex_unlock(&src_as->lock); … … 891 876 * There is no backend or the backend does not 892 877 * know how to share the area. 893 *894 878 */ 895 879 mutex_unlock(&src_area->lock); … … 898 882 } 899 883 900 size_t src_size = src_area->pages * PAGE_SIZE;884 size_t src_size = src_area->pages << PAGE_WIDTH; 901 885 unsigned int src_flags = src_area->flags; 902 886 mem_backend_t *src_backend = src_area->backend; … … 918 902 * First, prepare the area for sharing. 919 903 * Then it will be safe to unlock it. 920 *921 904 */ 922 905 share_info_t *sh_info = src_area->sh_info; … … 930 913 /* 931 914 * Call the backend to setup sharing. 932 *933 915 */ 934 916 src_area->backend->share(src_area); … … 949 931 * The flags of the source area are masked against dst_flags_mask 950 932 * to support sharing in less privileged mode. 951 *952 933 */ 953 934 as_area_t *dst_area = as_area_create(dst_as, dst_flags_mask, src_size, … … 966 947 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL 967 948 * attribute and set the sh_info. 968 *969 949 */ 970 950 mutex_lock(&dst_as->lock); … … 989 969 NO_TRACE bool as_area_check_access(as_area_t *area, pf_access_t access) 990 970 { 971 ASSERT(mutex_locked(&area->lock)); 972 991 973 int flagmap[] = { 992 974 [PF_ACCESS_READ] = AS_AREA_READ, … … 994 976 [PF_ACCESS_EXEC] = AS_AREA_EXEC 995 977 }; 996 997 ASSERT(mutex_locked(&area->lock));998 978 999 979 if (!(area->flags & flagmap[access])) … … 1066 1046 /* 1067 1047 * Compute total number of used pages in the used_space B+tree 1068 *1069 1048 */ 1070 1049 size_t used_pages = 0; … … 1088 1067 /* 1089 1068 * Start TLB shootdown sequence. 1090 *1091 1069 */ 1092 1070 ipl_t ipl = tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, … … 1096 1074 * Remove used pages from page tables and remember their frame 1097 1075 * numbers. 1098 *1099 1076 */ 1100 1077 size_t frame_idx = 0; … … 1111 1088 1112 1089 for (size = 0; size < (size_t) node->value[i]; size++) { 1113 pte_t *pte = page_mapping_find(as, ptr + size * PAGE_SIZE); 1090 pte_t *pte = 1091 page_mapping_find(as, ptr + (size << PAGE_WIDTH)); 1114 1092 1115 1093 ASSERT(pte); … … 1120 1098 1121 1099 /* Remove old mapping */ 1122 page_mapping_remove(as, ptr + size * PAGE_SIZE);1100 page_mapping_remove(as, ptr + (size << PAGE_WIDTH)); 1123 1101 } 1124 1102 } … … 1127 1105 /* 1128 1106 * Finish TLB shootdown sequence. 1129 *1130 1107 */ 1131 1108 … … 1135 1112 * Invalidate potential software translation caches (e.g. TSB on 1136 1113 * sparc64). 1137 *1138 1114 */ 1139 1115 as_invalidate_translation_cache(as, area->base, area->pages); … … 1168 1144 1169 1145 /* Insert the new mapping */ 1170 page_mapping_insert(as, ptr + size * PAGE_SIZE,1146 page_mapping_insert(as, ptr + (size << PAGE_WIDTH), 1171 1147 old_frame[frame_idx++], page_flags); 1172 1148 … … 1217 1193 * No area contained mapping for 'page'. 1218 1194 * Signal page fault to low-level handler. 1219 *1220 1195 */ 1221 1196 mutex_unlock(&AS->lock); … … 1237 1212 * The address space area is not backed by any backend 1238 1213 * or the backend cannot handle page faults. 1239 *1240 1214 */ 1241 1215 mutex_unlock(&area->lock); … … 1249 1223 * To avoid race condition between two page faults on the same address, 1250 1224 * we need to make sure the mapping has not been already inserted. 1251 *1252 1225 */ 1253 1226 pte_t *pte; … … 1267 1240 /* 1268 1241 * Resort to the backend page fault handler. 1269 *1270 1242 */ 1271 1243 if (area->backend->page_fault(area, page, access) != AS_PF_OK) { … … 1322 1294 * preemption is disabled. We should not be 1323 1295 * holding any other lock. 1324 *1325 1296 */ 1326 1297 (void) interrupts_enable(); … … 1342 1313 * list of inactive address spaces with assigned 1343 1314 * ASID. 1344 *1345 1315 */ 1346 1316 ASSERT(old_as->asid != ASID_INVALID); … … 1353 1323 * Perform architecture-specific tasks when the address space 1354 1324 * is being removed from the CPU. 1355 *1356 1325 */ 1357 1326 as_deinstall_arch(old_as); … … 1360 1329 /* 1361 1330 * Second, prepare the new address space. 1362 *1363 1331 */ 1364 1332 if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) { … … 1376 1344 * Perform architecture-specific steps. 1377 1345 * (e.g. write ASID to hardware register etc.) 1378 *1379 1346 */ 1380 1347 as_install_arch(new_as); … … 1395 1362 { 1396 1363 ASSERT(mutex_locked(&area->lock)); 1397 1364 1398 1365 return area_flags_to_page_flags(area->flags); 1399 1366 } … … 1499 1466 1500 1467 if (src_area) { 1501 size = src_area->pages * PAGE_SIZE;1468 size = src_area->pages << PAGE_WIDTH; 1502 1469 mutex_unlock(&src_area->lock); 1503 1470 } else … … 1516 1483 * @param count Number of page to be marked. 1517 1484 * 1518 * @return Zero on failure and non-zeroon success.1519 * 1520 */ 1521 intused_space_insert(as_area_t *area, uintptr_t page, size_t count)1485 * @return False on failure or true on success. 1486 * 1487 */ 1488 bool used_space_insert(as_area_t *area, uintptr_t page, size_t count) 1522 1489 { 1523 1490 ASSERT(mutex_locked(&area->lock)); … … 1530 1497 /* 1531 1498 * We hit the beginning of some used space. 1532 * 1533 */ 1534 return 0; 1499 */ 1500 return false; 1535 1501 } 1536 1502 1537 1503 if (!leaf->keys) { 1538 1504 btree_insert(&area->used_space, page, (void *) count, leaf); 1539 return 1;1505 goto success; 1540 1506 } 1541 1507 … … 1551 1517 * somewhere between the rightmost interval of 1552 1518 * the left neigbour and the first interval of the leaf. 1553 *1554 1519 */ 1555 1520 1556 1521 if (page >= right_pg) { 1557 1522 /* Do nothing. */ 1558 } else if (overlaps(page, count * PAGE_SIZE, left_pg,1559 left_cnt * PAGE_SIZE)) {1523 } else if (overlaps(page, count << PAGE_WIDTH, left_pg, 1524 left_cnt << PAGE_WIDTH)) { 1560 1525 /* The interval intersects with the left interval. */ 1561 return 0;1562 } else if (overlaps(page, count * PAGE_SIZE, right_pg,1563 right_cnt * PAGE_SIZE)) {1526 return false; 1527 } else if (overlaps(page, count << PAGE_WIDTH, right_pg, 1528 right_cnt << PAGE_WIDTH)) { 1564 1529 /* The interval intersects with the right interval. */ 1565 return 0;1566 } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&1567 (page + count * PAGE_SIZE== right_pg)) {1530 return false; 1531 } else if ((page == left_pg + (left_cnt << PAGE_WIDTH)) && 1532 (page + (count << PAGE_WIDTH) == right_pg)) { 1568 1533 /* 1569 1534 * The interval can be added by merging the two already 1570 1535 * present intervals. 1571 *1572 1536 */ 1573 1537 node->value[node->keys - 1] += count + right_cnt; 1574 1538 btree_remove(&area->used_space, right_pg, leaf); 1575 return 1;1576 } else if (page == left_pg + left_cnt * PAGE_SIZE) {1539 goto success; 1540 } else if (page == left_pg + (left_cnt << PAGE_WIDTH)) { 1577 1541 /* 1578 1542 * The interval can be added by simply growing the left 1579 1543 * interval. 1580 *1581 1544 */ 1582 1545 node->value[node->keys - 1] += count; 1583 return 1;1584 } else if (page + count * PAGE_SIZE== right_pg) {1546 goto success; 1547 } else if (page + (count << PAGE_WIDTH) == right_pg) { 1585 1548 /* 1586 1549 * The interval can be addded by simply moving base of 1587 1550 * the right interval down and increasing its size 1588 1551 * accordingly. 1589 *1590 1552 */ 1591 1553 leaf->value[0] += count; 1592 1554 leaf->key[0] = page; 1593 return 1;1555 goto success; 1594 1556 } else { 1595 1557 /* 1596 1558 * The interval is between both neigbouring intervals, 1597 1559 * but cannot be merged with any of them. 1598 *1599 1560 */ 1600 1561 btree_insert(&area->used_space, page, (void *) count, 1601 1562 leaf); 1602 return 1;1563 goto success; 1603 1564 } 1604 1565 } else if (page < leaf->key[0]) { … … 1609 1570 * Investigate the border case in which the left neighbour does 1610 1571 * not exist but the interval fits from the left. 1611 * 1612 */ 1613 1614 if (overlaps(page, count * PAGE_SIZE, right_pg, 1615 right_cnt * PAGE_SIZE)) { 1572 */ 1573 1574 if (overlaps(page, count << PAGE_WIDTH, right_pg, 1575 right_cnt << PAGE_WIDTH)) { 1616 1576 /* The interval intersects with the right interval. */ 1617 return 0;1618 } else if (page + count * PAGE_SIZE== right_pg) {1577 return false; 1578 } else if (page + (count << PAGE_WIDTH) == right_pg) { 1619 1579 /* 1620 1580 * The interval can be added by moving the base of the 1621 1581 * right interval down and increasing its size 1622 1582 * accordingly. 1623 *1624 1583 */ 1625 1584 leaf->key[0] = page; 1626 1585 leaf->value[0] += count; 1627 return 1;1586 goto success; 1628 1587 } else { 1629 1588 /* 1630 1589 * The interval doesn't adjoin with the right interval. 1631 1590 * It must be added individually. 1632 *1633 1591 */ 1634 1592 btree_insert(&area->used_space, page, (void *) count, 1635 1593 leaf); 1636 return 1;1594 goto success; 1637 1595 } 1638 1596 } … … 1649 1607 * somewhere between the leftmost interval of 1650 1608 * the right neigbour and the last interval of the leaf. 1651 *1652 1609 */ 1653 1610 1654 1611 if (page < left_pg) { 1655 1612 /* Do nothing. */ 1656 } else if (overlaps(page, count * PAGE_SIZE, left_pg,1657 left_cnt * PAGE_SIZE)) {1613 } else if (overlaps(page, count << PAGE_WIDTH, left_pg, 1614 left_cnt << PAGE_WIDTH)) { 1658 1615 /* The interval intersects with the left interval. */ 1659 return 0;1660 } else if (overlaps(page, count * PAGE_SIZE, right_pg,1661 right_cnt * PAGE_SIZE)) {1616 return false; 1617 } else if (overlaps(page, count << PAGE_WIDTH, right_pg, 1618 right_cnt << PAGE_WIDTH)) { 1662 1619 /* The interval intersects with the right interval. */ 1663 return 0;1664 } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&1665 (page + count * PAGE_SIZE== right_pg)) {1620 return false; 1621 } else if ((page == left_pg + (left_cnt << PAGE_WIDTH)) && 1622 (page + (count << PAGE_WIDTH) == right_pg)) { 1666 1623 /* 1667 1624 * The interval can be added by merging the two already 1668 1625 * present intervals. 1669 *1670 1626 */ 1671 1627 leaf->value[leaf->keys - 1] += count + right_cnt; 1672 1628 btree_remove(&area->used_space, right_pg, node); 1673 return 1;1674 } else if (page == left_pg + left_cnt * PAGE_SIZE) {1629 goto success; 1630 } else if (page == left_pg + (left_cnt << PAGE_WIDTH)) { 1675 1631 /* 1676 1632 * The interval can be added by simply growing the left 1677 1633 * interval. 1678 *1679 1634 */ 1680 leaf->value[leaf->keys - 1] += 1681 return 1;1682 } else if (page + count * PAGE_SIZE== right_pg) {1635 leaf->value[leaf->keys - 1] += count; 1636 goto success; 1637 } else if (page + (count << PAGE_WIDTH) == right_pg) { 1683 1638 /* 1684 1639 * The interval can be addded by simply moving base of 1685 1640 * the right interval down and increasing its size 1686 1641 * accordingly. 1687 *1688 1642 */ 1689 1643 node->value[0] += count; 1690 1644 node->key[0] = page; 1691 return 1;1645 goto success; 1692 1646 } else { 1693 1647 /* 1694 1648 * The interval is between both neigbouring intervals, 1695 1649 * but cannot be merged with any of them. 1696 *1697 1650 */ 1698 1651 btree_insert(&area->used_space, page, (void *) count, 1699 1652 leaf); 1700 return 1;1653 goto success; 1701 1654 } 1702 1655 } else if (page >= leaf->key[leaf->keys - 1]) { … … 1707 1660 * Investigate the border case in which the right neighbour 1708 1661 * does not exist but the interval fits from the right. 1709 * 1710 */ 1711 1712 if (overlaps(page, count * PAGE_SIZE, left_pg, 1713 left_cnt * PAGE_SIZE)) { 1662 */ 1663 1664 if (overlaps(page, count << PAGE_WIDTH, left_pg, 1665 left_cnt << PAGE_WIDTH)) { 1714 1666 /* The interval intersects with the left interval. */ 1715 return 0;1716 } else if (left_pg + left_cnt * PAGE_SIZE== page) {1667 return false; 1668 } else if (left_pg + (left_cnt << PAGE_WIDTH) == page) { 1717 1669 /* 1718 1670 * The interval can be added by growing the left 1719 1671 * interval. 1720 *1721 1672 */ 1722 1673 leaf->value[leaf->keys - 1] += count; 1723 return 1;1674 goto success; 1724 1675 } else { 1725 1676 /* 1726 1677 * The interval doesn't adjoin with the left interval. 1727 1678 * It must be added individually. 1728 *1729 1679 */ 1730 1680 btree_insert(&area->used_space, page, (void *) count, 1731 1681 leaf); 1732 return 1;1682 goto success; 1733 1683 } 1734 1684 } … … 1738 1688 * only between two other intervals of the leaf. The two border cases 1739 1689 * were already resolved. 1740 *1741 1690 */ 1742 1691 btree_key_t i; … … 1750 1699 /* 1751 1700 * The interval fits between left_pg and right_pg. 1752 *1753 1701 */ 1754 1702 1755 if (overlaps(page, count * PAGE_SIZE, left_pg,1756 left_cnt * PAGE_SIZE)) {1703 if (overlaps(page, count << PAGE_WIDTH, left_pg, 1704 left_cnt << PAGE_WIDTH)) { 1757 1705 /* 1758 1706 * The interval intersects with the left 1759 1707 * interval. 1760 *1761 1708 */ 1762 return 0;1763 } else if (overlaps(page, count * PAGE_SIZE, right_pg,1764 right_cnt * PAGE_SIZE)) {1709 return false; 1710 } else if (overlaps(page, count << PAGE_WIDTH, right_pg, 1711 right_cnt << PAGE_WIDTH)) { 1765 1712 /* 1766 1713 * The interval intersects with the right 1767 1714 * interval. 1768 *1769 1715 */ 1770 return 0;1771 } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&1772 (page + count * PAGE_SIZE== right_pg)) {1716 return false; 1717 } else if ((page == left_pg + (left_cnt << PAGE_WIDTH)) && 1718 (page + (count << PAGE_WIDTH) == right_pg)) { 1773 1719 /* 1774 1720 * The interval can be added by merging the two 1775 1721 * already present intervals. 1776 *1777 1722 */ 1778 1723 leaf->value[i - 1] += count + right_cnt; 1779 1724 btree_remove(&area->used_space, right_pg, leaf); 1780 return 1;1781 } else if (page == left_pg + left_cnt * PAGE_SIZE) {1725 goto success; 1726 } else if (page == left_pg + (left_cnt << PAGE_WIDTH)) { 1782 1727 /* 1783 1728 * The interval can be added by simply growing 1784 1729 * the left interval. 1785 *1786 1730 */ 1787 1731 leaf->value[i - 1] += count; 1788 return 1;1789 } else if (page + count * PAGE_SIZE== right_pg) {1732 goto success; 1733 } else if (page + (count << PAGE_WIDTH) == right_pg) { 1790 1734 /* 1791 1735 * The interval can be addded by simply moving 1792 1736 * base of the right interval down and 1793 1737 * increasing its size accordingly. 1794 *1795 1738 */ 1796 1739 leaf->value[i] += count; 1797 1740 leaf->key[i] = page; 1798 return 1;1741 goto success; 1799 1742 } else { 1800 1743 /* … … 1802 1745 * intervals, but cannot be merged with any of 1803 1746 * them. 1804 *1805 1747 */ 1806 1748 btree_insert(&area->used_space, page, 1807 1749 (void *) count, leaf); 1808 return 1;1750 goto success; 1809 1751 } 1810 1752 } … … 1813 1755 panic("Inconsistency detected while adding %zu pages of used " 1814 1756 "space at %p.", count, (void *) page); 1757 1758 success: 1759 area->resident += count; 1760 return true; 1815 1761 } 1816 1762 … … 1823 1769 * @param count Number of page to be marked. 1824 1770 * 1825 * @return Zero on failure and non-zeroon success.1826 * 1827 */ 1828 intused_space_remove(as_area_t *area, uintptr_t page, size_t count)1771 * @return False on failure or true on success. 1772 * 1773 */ 1774 bool used_space_remove(as_area_t *area, uintptr_t page, size_t count) 1829 1775 { 1830 1776 ASSERT(mutex_locked(&area->lock)); … … 1837 1783 /* 1838 1784 * We are lucky, page is the beginning of some interval. 1839 *1840 1785 */ 1841 1786 if (count > pages) { 1842 return 0;1787 return false; 1843 1788 } else if (count == pages) { 1844 1789 btree_remove(&area->used_space, page, leaf); 1845 return 1;1790 goto success; 1846 1791 } else { 1847 1792 /* 1848 1793 * Find the respective interval. 1849 1794 * Decrease its size and relocate its start address. 1850 *1851 1795 */ 1852 1796 btree_key_t i; 1853 1797 for (i = 0; i < leaf->keys; i++) { 1854 1798 if (leaf->key[i] == page) { 1855 leaf->key[i] += count * PAGE_SIZE;1799 leaf->key[i] += count << PAGE_WIDTH; 1856 1800 leaf->value[i] -= count; 1857 return 1;1801 goto success; 1858 1802 } 1859 1803 } 1804 1860 1805 goto error; 1861 1806 } … … 1867 1812 size_t left_cnt = (size_t) node->value[node->keys - 1]; 1868 1813 1869 if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,1870 count * PAGE_SIZE)) {1871 if (page + count * PAGE_SIZE==1872 left_pg + left_cnt * PAGE_SIZE) {1814 if (overlaps(left_pg, left_cnt << PAGE_WIDTH, page, 1815 count << PAGE_WIDTH)) { 1816 if (page + (count << PAGE_WIDTH) == 1817 left_pg + (left_cnt << PAGE_WIDTH)) { 1873 1818 /* 1874 1819 * The interval is contained in the rightmost … … 1876 1821 * removed by updating the size of the bigger 1877 1822 * interval. 1878 *1879 1823 */ 1880 1824 node->value[node->keys - 1] -= count; 1881 return 1;1882 } else if (page + count * PAGE_SIZE<1883 left_pg + left_cnt*PAGE_SIZE) {1825 goto success; 1826 } else if (page + (count << PAGE_WIDTH) < 1827 left_pg + (left_cnt << PAGE_WIDTH)) { 1884 1828 /* 1885 1829 * The interval is contained in the rightmost … … 1888 1832 * the original interval and also inserting a 1889 1833 * new interval. 1890 *1891 1834 */ 1892 size_t new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -1893 (page + count*PAGE_SIZE)) >> PAGE_WIDTH;1835 size_t new_cnt = ((left_pg + (left_cnt << PAGE_WIDTH)) - 1836 (page + (count << PAGE_WIDTH))) >> PAGE_WIDTH; 1894 1837 node->value[node->keys - 1] -= count + new_cnt; 1895 1838 btree_insert(&area->used_space, page + 1896 count * PAGE_SIZE, (void *) new_cnt, leaf);1897 return 1;1839 (count << PAGE_WIDTH), (void *) new_cnt, leaf); 1840 goto success; 1898 1841 } 1899 1842 } 1900 return 0; 1843 1844 return false; 1901 1845 } else if (page < leaf->key[0]) 1902 return 0;1846 return false; 1903 1847 1904 1848 if (page > leaf->key[leaf->keys - 1]) { … … 1906 1850 size_t left_cnt = (size_t) leaf->value[leaf->keys - 1]; 1907 1851 1908 if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,1909 count * PAGE_SIZE)) {1910 if (page + count * PAGE_SIZE==1911 left_pg + left_cnt * PAGE_SIZE) {1852 if (overlaps(left_pg, left_cnt << PAGE_WIDTH, page, 1853 count << PAGE_WIDTH)) { 1854 if (page + (count << PAGE_WIDTH) == 1855 left_pg + (left_cnt << PAGE_WIDTH)) { 1912 1856 /* 1913 1857 * The interval is contained in the rightmost 1914 1858 * interval of the leaf and can be removed by 1915 1859 * updating the size of the bigger interval. 1916 *1917 1860 */ 1918 1861 leaf->value[leaf->keys - 1] -= count; 1919 return 1;1920 } else if (page + count * PAGE_SIZE< left_pg +1921 left_cnt * PAGE_SIZE) {1862 goto success; 1863 } else if (page + (count << PAGE_WIDTH) < left_pg + 1864 (left_cnt << PAGE_WIDTH)) { 1922 1865 /* 1923 1866 * The interval is contained in the rightmost … … 1926 1869 * original interval and also inserting a new 1927 1870 * interval. 1928 *1929 1871 */ 1930 size_t new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -1931 (page + count * PAGE_SIZE)) >> PAGE_WIDTH;1872 size_t new_cnt = ((left_pg + (left_cnt << PAGE_WIDTH)) - 1873 (page + (count << PAGE_WIDTH))) >> PAGE_WIDTH; 1932 1874 leaf->value[leaf->keys - 1] -= count + new_cnt; 1933 1875 btree_insert(&area->used_space, page + 1934 count * PAGE_SIZE, (void *) new_cnt, leaf);1935 return 1;1876 (count << PAGE_WIDTH), (void *) new_cnt, leaf); 1877 goto success; 1936 1878 } 1937 1879 } 1938 return 0; 1880 1881 return false; 1939 1882 } 1940 1883 1941 1884 /* 1942 1885 * The border cases have been already resolved. 1943 * Now the interval can be only between intervals of the leaf. 1886 * Now the interval can be only between intervals of the leaf. 1944 1887 */ 1945 1888 btree_key_t i; … … 1953 1896 * to (i - 1) and i. 1954 1897 */ 1955 if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,1956 count * PAGE_SIZE)) {1957 if (page + count * PAGE_SIZE==1958 left_pg + left_cnt*PAGE_SIZE) {1898 if (overlaps(left_pg, left_cnt << PAGE_WIDTH, page, 1899 count << PAGE_WIDTH)) { 1900 if (page + (count << PAGE_WIDTH) == 1901 left_pg + (left_cnt << PAGE_WIDTH)) { 1959 1902 /* 1960 1903 * The interval is contained in the … … 1962 1905 * be removed by updating the size of 1963 1906 * the bigger interval. 1964 *1965 1907 */ 1966 1908 leaf->value[i - 1] -= count; 1967 return 1;1968 } else if (page + count * PAGE_SIZE<1969 left_pg + left_cnt * PAGE_SIZE) {1909 goto success; 1910 } else if (page + (count << PAGE_WIDTH) < 1911 left_pg + (left_cnt << PAGE_WIDTH)) { 1970 1912 /* 1971 1913 * The interval is contained in the … … 1976 1918 */ 1977 1919 size_t new_cnt = ((left_pg + 1978 left_cnt * PAGE_SIZE) -1979 (page + count * PAGE_SIZE)) >>1920 (left_cnt << PAGE_WIDTH)) - 1921 (page + (count << PAGE_WIDTH))) >> 1980 1922 PAGE_WIDTH; 1981 1923 leaf->value[i - 1] -= count + new_cnt; 1982 1924 btree_insert(&area->used_space, page + 1983 count * PAGE_SIZE, (void *) new_cnt,1925 (count << PAGE_WIDTH), (void *) new_cnt, 1984 1926 leaf); 1985 return 1;1927 goto success; 1986 1928 } 1987 1929 } 1988 return 0; 1930 1931 return false; 1989 1932 } 1990 1933 } … … 1993 1936 panic("Inconsistency detected while removing %zu pages of used " 1994 1937 "space from %p.", count, (void *) page); 1938 1939 success: 1940 area->resident -= count; 1941 return true; 1995 1942 } 1996 1943 … … 2027 1974 } 2028 1975 1976 /** Return pointer to unmapped address space area 1977 * 1978 * @param base Lowest address bound. 1979 * @param size Requested size of the allocation. 1980 * 1981 * @return Pointer to the beginning of unmapped address space area. 1982 * 1983 */ 1984 sysarg_t sys_as_get_unmapped_area(uintptr_t base, size_t size) 1985 { 1986 if (size == 0) 1987 return 0; 1988 1989 /* 1990 * Make sure we allocate from page-aligned 1991 * address. Check for possible overflow in 1992 * each step. 1993 */ 1994 1995 size_t pages = SIZE2FRAMES(size); 1996 uintptr_t ret = 0; 1997 1998 /* 1999 * Find the lowest unmapped address aligned on the sz 2000 * boundary, not smaller than base and of the required size. 2001 */ 2002 2003 mutex_lock(&AS->lock); 2004 2005 /* First check the base address itself */ 2006 uintptr_t addr = ALIGN_UP(base, PAGE_SIZE); 2007 if ((addr >= base) && 2008 (check_area_conflicts(AS, addr, pages, NULL))) 2009 ret = addr; 2010 2011 /* Eventually check the addresses behind each area */ 2012 link_t *cur; 2013 for (cur = AS->as_area_btree.leaf_head.next; 2014 (ret == 0) && (cur != &AS->as_area_btree.leaf_head); 2015 cur = cur->next) { 2016 btree_node_t *node = 2017 list_get_instance(cur, btree_node_t, leaf_link); 2018 2019 btree_key_t i; 2020 for (i = 0; (ret == 0) && (i < node->keys); i++) { 2021 as_area_t *area = (as_area_t *) node->value[i]; 2022 2023 mutex_lock(&area->lock); 2024 2025 uintptr_t addr = 2026 ALIGN_UP(area->base + (area->pages << PAGE_WIDTH), 2027 PAGE_SIZE); 2028 2029 if ((addr >= base) && (addr >= area->base) && 2030 (check_area_conflicts(AS, addr, pages, area))) 2031 ret = addr; 2032 2033 mutex_unlock(&area->lock); 2034 } 2035 } 2036 2037 mutex_unlock(&AS->lock); 2038 2039 return (sysarg_t) ret; 2040 } 2041 2029 2042 /** Get list of adress space areas. 2030 2043 * … … 2093 2106 mutex_lock(&as->lock); 2094 2107 2095 /* print out info about address space areas */2108 /* Print out info about address space areas */ 2096 2109 link_t *cur; 2097 2110 for (cur = as->as_area_btree.leaf_head.next; -
kernel/generic/src/proc/program.c
raa7dc64 r0c968a17 171 171 void *loader = program_loader; 172 172 if (!loader) { 173 as_destroy(as); 173 174 printf("Cannot spawn loader as none was registered\n"); 174 175 return ENOENT; … … 179 180 if (rc != EE_OK) { 180 181 as_destroy(as); 182 printf("Cannot spawn loader (%s)\n", elf_error(rc)); 181 183 return ENOENT; 182 184 } -
kernel/generic/src/syscall/syscall.c
raa7dc64 r0c968a17 143 143 (syshandler_t) sys_as_area_change_flags, 144 144 (syshandler_t) sys_as_area_destroy, 145 (syshandler_t) sys_as_get_unmapped_area, 145 146 146 147 /* IPC related syscalls. */ -
kernel/generic/src/sysinfo/stats.c
raa7dc64 r0c968a17 160 160 static size_t get_task_virtmem(as_t *as) 161 161 { 162 size_t result = 0;163 164 162 /* 165 * We are holding some spinlocks here and therefore are not allowed to 166 * block. Only attempt to lock the address space and address space area 167 * mutexes conditionally. If it is not possible to lock either object, 168 * allow the statistics to be inexact by skipping the respective object. 169 * 170 * Note that it may be infinitely better to let the address space 171 * management code compute these statistics as it proceeds instead of 172 * having them calculated over and over again here. 163 * We are holding spinlocks here and therefore are not allowed to 164 * block. Only attempt to lock the address space and address space 165 * area mutexes conditionally. If it is not possible to lock either 166 * object, return inexact statistics by skipping the respective object. 173 167 */ 174 168 175 169 if (SYNCH_FAILED(mutex_trylock(&as->lock))) 176 return result * PAGE_SIZE; 170 return 0; 171 172 size_t pages = 0; 177 173 178 174 /* Walk the B+ tree and count pages */ 179 link_t *cur;180 for (cur = as->as_area_btree.leaf_head.next;181 cur != &as->as_area_btree.leaf_head; cur = cur->next) {182 btree_node_t *node =183 list_get_instance(cur, btree_node_t, leaf_link);184 185 unsigned int i;186 for (i = 0; i < node->keys; i++) {187 as_area_t *area = node->value[i];188 189 if (SYNCH_FAILED(mutex_trylock(&area->lock)))190 continue;191 result += area->pages;192 mutex_unlock(&area->lock);193 }194 }195 196 mutex_unlock(&as->lock);197 198 return result * PAGE_SIZE;199 }200 201 /** Get the resident (used) size of a virtual address space202 *203 * @param as Address space.204 *205 * @return Size of the resident (used) virtual address space (bytes).206 *207 */208 static size_t get_task_resmem(as_t *as)209 {210 size_t result = 0;211 212 /*213 * We are holding some spinlocks here and therefore are not allowed to214 * block. Only attempt to lock the address space and address space area215 * mutexes conditionally. If it is not possible to lock either object,216 * allow the statistics to be inexact by skipping the respective object.217 *218 * Note that it may be infinitely better to let the address space219 * management code compute these statistics as it proceeds instead of220 * having them calculated over and over again here.221 */222 223 if (SYNCH_FAILED(mutex_trylock(&as->lock)))224 return result * PAGE_SIZE;225 226 /* Walk the B+ tree of AS areas */227 175 link_t *cur; 228 176 for (cur = as->as_area_btree.leaf_head.next; … … 238 186 continue; 239 187 240 /* Walk the B+ tree of resident pages */ 241 link_t *rcur; 242 for (rcur = area->used_space.leaf_head.next; 243 rcur != &area->used_space.leaf_head; rcur = rcur->next) { 244 btree_node_t *rnode = 245 list_get_instance(rcur, btree_node_t, leaf_link); 246 247 unsigned int j; 248 for (j = 0; j < rnode->keys; j++) 249 result += (size_t) rnode->value[i]; 250 } 251 188 pages += area->pages; 252 189 mutex_unlock(&area->lock); 253 190 } … … 256 193 mutex_unlock(&as->lock); 257 194 258 return result * PAGE_SIZE; 195 return (pages << PAGE_WIDTH); 196 } 197 198 /** Get the resident (used) size of a virtual address space 199 * 200 * @param as Address space. 201 * 202 * @return Size of the resident (used) virtual address space (bytes). 203 * 204 */ 205 static size_t get_task_resmem(as_t *as) 206 { 207 /* 208 * We are holding spinlocks here and therefore are not allowed to 209 * block. Only attempt to lock the address space and address space 210 * area mutexes conditionally. If it is not possible to lock either 211 * object, return inexact statistics by skipping the respective object. 212 */ 213 214 if (SYNCH_FAILED(mutex_trylock(&as->lock))) 215 return 0; 216 217 size_t pages = 0; 218 219 /* Walk the B+ tree and count pages */ 220 link_t *cur; 221 for (cur = as->as_area_btree.leaf_head.next; 222 cur != &as->as_area_btree.leaf_head; cur = cur->next) { 223 btree_node_t *node = 224 list_get_instance(cur, btree_node_t, leaf_link); 225 226 unsigned int i; 227 for (i = 0; i < node->keys; i++) { 228 as_area_t *area = node->value[i]; 229 230 if (SYNCH_FAILED(mutex_trylock(&area->lock))) 231 continue; 232 233 pages += area->resident; 234 mutex_unlock(&area->lock); 235 } 236 } 237 238 mutex_unlock(&as->lock); 239 240 return (pages << PAGE_WIDTH); 259 241 } 260 242 -
uspace/app/taskdump/taskdump.c
raa7dc64 r0c968a17 406 406 } 407 407 408 rc = asprintf(&file_name, "/drv/%s/%s", app_name, app_name); 409 if (rc < 0) { 410 printf("Memory allocation failure.\n"); 411 exit(1); 412 } 413 414 rc = symtab_load(file_name, &app_symtab); 415 if (rc == EOK) { 416 printf("Loaded symbol table from %s\n", file_name); 417 free(file_name); 418 return; 419 } 420 408 421 free(file_name); 409 422 printf("Failed autoloading symbol table.\n"); -
uspace/lib/block/libblock.c
raa7dc64 r0c968a17 294 294 295 295 /* Allow 1:1 or small-to-large block size translation */ 296 if (cache->lblock_size % devcon->pblock_size != 0) 296 if (cache->lblock_size % devcon->pblock_size != 0) { 297 free(cache); 297 298 return ENOTSUP; 299 } 298 300 299 301 cache->blocks_cluster = cache->lblock_size / devcon->pblock_size; … … 436 438 if (!b->data) { 437 439 free(b); 440 b = NULL; 438 441 goto recycle; 439 442 } … … 563 566 assert(devcon); 564 567 assert(devcon->cache); 568 assert(block->refcnt >= 1); 565 569 566 570 cache = devcon->cache; … … 622 626 unsigned long key = block->lba; 623 627 hash_table_remove(&cache->block_hash, &key, 1); 628 free(block->data); 624 629 free(block); 625 free(block->data);626 630 cache->blocks_cached--; 627 631 fibril_mutex_unlock(&cache->lock); -
uspace/lib/c/arch/abs32le/_link.ld.in
raa7dc64 r0c968a17 44 44 } :data 45 45 46 . = ALIGN(0x1000);47 48 _heap = .;49 50 46 /DISCARD/ : { 51 47 *(*); -
uspace/lib/c/arch/amd64/_link.ld.in
raa7dc64 r0c968a17 42 42 } :data 43 43 44 . = ALIGN(0x1000);45 _heap = .;46 47 44 #ifdef CONFIG_LINE_DEBUG 48 45 .comment 0 : { *(.comment); } :debug … … 61 58 *(*); 62 59 } 63 64 60 } -
uspace/lib/c/arch/arm32/_link.ld.in
raa7dc64 r0c968a17 9 9 SECTIONS { 10 10 . = 0x1000 + SIZEOF_HEADERS; 11 11 12 12 .init : { 13 13 *(.init); 14 } : text 14 } :text 15 15 16 .text : { 16 17 *(.text); 17 18 *(.rodata*); 18 19 } :text 19 20 20 21 . = . + 0x1000; 21 22 22 23 .data : { 23 24 *(.opd); … … 25 26 *(.sdata); 26 27 } :data 28 27 29 .tdata : { 28 30 _tdata_start = .; … … 33 35 _tbss_end = .; 34 36 } :data 37 35 38 _tls_alignment = ALIGNOF(.tdata); 39 36 40 .bss : { 37 41 *(.sbss); 38 42 *(.scommon); 39 40 43 *(COMMON); 44 *(.bss); 41 45 } :data 42 43 . = ALIGN(0x1000);44 _heap = .;45 46 46 47 /DISCARD/ : { 47 48 *(*); 48 49 } 49 50 50 } -
uspace/lib/c/arch/ia32/_link.ld.in
raa7dc64 r0c968a17 43 43 } :data 44 44 45 . = ALIGN(0x1000);46 _heap = .;47 48 45 #ifdef CONFIG_LINE_DEBUG 49 46 .comment 0 : { *(.comment); } :debug -
uspace/lib/c/arch/ia64/_link.ld.in
raa7dc64 r0c968a17 9 9 SECTIONS { 10 10 . = 0x4000 + SIZEOF_HEADERS; 11 11 12 12 .init : { 13 13 *(.init); 14 } : text 14 } :text 15 15 16 .text : { 16 17 *(.text); 17 18 *(.rodata*); 18 19 } :text 19 20 20 21 . = . + 0x4000; 21 22 22 23 .got : { 23 24 _gp = .; 24 25 *(.got*); 25 } :data 26 } :data 27 26 28 .data : { 27 29 *(.opd); … … 29 31 *(.sdata); 30 32 } :data 33 31 34 .tdata : { 32 35 _tdata_start = .; … … 37 40 _tbss_end = .; 38 41 } :data 42 39 43 _tls_alignment = ALIGNOF(.tdata); 44 40 45 .bss : { 41 46 *(.sbss); … … 44 49 *(.bss); 45 50 } :data 46 47 . = ALIGN(0x4000); 48 _heap = .; 49 51 50 52 /DISCARD/ : { 51 53 *(*); 52 54 } 53 55 } -
uspace/lib/c/arch/mips32/_link.ld.in
raa7dc64 r0c968a17 13 13 *(.init); 14 14 } :text 15 15 16 .text : { 16 17 *(.text); 17 18 *(.rodata*); 18 19 } :text 19 20 20 21 . = . + 0x4000; 21 22 22 23 .data : { 23 24 *(.data); 24 25 *(.data.rel*); 25 26 } :data 26 27 27 28 .got : { 28 29 _gp = .; 29 30 *(.got); 30 31 } :data 31 32 32 33 .tdata : { 33 34 _tdata_start = .; 34 35 *(.tdata); 35 36 _tdata_end = .; 37 } :data 38 39 .tbss : { 36 40 _tbss_start = .; 37 41 *(.tbss); 38 42 _tbss_end = .; 39 43 } :data 40 _tls_alignment = ALIGNOF(.tdata); 41 44 45 _tls_alignment = MAX(ALIGNOF(.tdata), ALIGNOF(.tbss)); 46 42 47 .sbss : { 43 48 *(.scommon); 44 49 *(.sbss); 45 } 50 } 51 46 52 .bss : { 47 53 *(.bss); 48 54 *(COMMON); 49 55 } :data 50 51 . = ALIGN(0x4000); 52 _heap = .; 53 56 54 57 /DISCARD/ : { 55 58 *(*); -
uspace/lib/c/arch/mips32/src/entry.s
raa7dc64 r0c968a17 29 29 .text 30 30 .section .init, "ax" 31 31 32 .global __entry 32 .global __entry_driver 33 33 34 .set noreorder 34 35 .option pic2 … … 57 58 nop 58 59 .end 59 60 # Alignment of output section data to 0x400061 .section .data62 .align 14 -
uspace/lib/c/arch/ppc32/_link.ld.in
raa7dc64 r0c968a17 9 9 SECTIONS { 10 10 . = 0x1000 + SIZEOF_HEADERS; 11 11 12 12 .init : { 13 13 *(.init); 14 14 } :text 15 15 16 .text : { 16 17 *(.text); 17 18 *(.rodata*); 18 19 } :text 19 20 20 21 . = . + 0x1000; 21 22 22 23 .data : { 23 24 *(.data); 24 25 *(.sdata); 25 26 } :data 27 26 28 .tdata : { 27 29 _tdata_start = .; … … 32 34 _tbss_end = .; 33 35 } :data 36 34 37 _tls_alignment = ALIGNOF(.tdata); 38 35 39 .bss : { 36 40 *(.sbss); … … 38 42 *(.bss); 39 43 } :data 40 41 . = ALIGN(0x1000);42 _heap = .;43 44 44 45 /DISCARD/ : { 45 46 *(*); 46 47 } 47 48 48 } -
uspace/lib/c/arch/sparc64/_link.ld.in
raa7dc64 r0c968a17 9 9 SECTIONS { 10 10 . = 0x4000 + SIZEOF_HEADERS; 11 11 12 12 .init : { 13 13 *(.init); 14 14 } :text 15 15 16 .text : { 16 17 *(.text); 17 18 *(.rodata*); 18 19 } :text 19 20 20 21 . = . + 0x4000; 21 22 22 23 .got : { 23 24 _gp = .; 24 25 *(.got*); 25 26 } :data 27 26 28 .data : { 27 29 *(.data); 28 30 *(.sdata); 29 31 } :data 32 30 33 .tdata : { 31 34 _tdata_start = .; … … 36 39 _tbss_end = .; 37 40 } :data 41 38 42 _tls_alignment = ALIGNOF(.tdata); 43 39 44 .bss : { 40 45 *(.sbss); … … 42 47 *(.bss); 43 48 } :data 44 45 . = ALIGN(0x4000);46 _heap = .;47 49 48 50 /DISCARD/ : { 49 51 *(*); 50 52 } 51 52 53 } -
uspace/lib/c/generic/as.c
raa7dc64 r0c968a17 40 40 #include <bitops.h> 41 41 #include <malloc.h> 42 43 /** Last position allocated by as_get_mappable_page */ 44 static uintptr_t last_allocated = 0; 42 #include "private/libc.h" 45 43 46 44 /** Create address space area. … … 103 101 } 104 102 105 /** Return pointer to some unmapped area, where fits new as_area103 /** Return pointer to unmapped address space area 106 104 * 107 105 * @param size Requested size of the allocation. 108 106 * 109 * @return pointer to the beginning107 * @return Pointer to the beginning of unmapped address space area. 110 108 * 111 109 */ 112 110 void *as_get_mappable_page(size_t size) 113 111 { 114 if (size == 0) 115 return NULL; 116 117 size_t sz = 1 << (fnzb(size - 1) + 1); 118 if (last_allocated == 0) 119 last_allocated = get_max_heap_addr(); 120 121 /* 122 * Make sure we allocate from naturally aligned address. 123 */ 124 uintptr_t res = ALIGN_UP(last_allocated, sz); 125 last_allocated = res + ALIGN_UP(size, PAGE_SIZE); 126 127 return ((void *) res); 112 return (void *) __SYSCALL2(SYS_AS_GET_UNMAPPED_AREA, 113 (sysarg_t) __entry, (sysarg_t) size); 128 114 } 129 115 -
uspace/lib/c/generic/async.c
raa7dc64 r0c968a17 294 294 } 295 295 296 /** Connection hash table removal callback function.297 *298 * This function is called whenever a connection is removed from the connection299 * hash table.300 *301 * @param item Connection hash table item being removed.302 *303 */304 296 static void conn_remove(link_t *item) 305 297 { 306 free(hash_table_get_instance(item, connection_t, link));307 298 } 308 299 … … 647 638 ipc_answer_0(FIBRIL_connection->close_callid, EOK); 648 639 640 free(FIBRIL_connection); 649 641 return 0; 650 642 } -
uspace/lib/c/generic/malloc.c
raa7dc64 r0c968a17 47 47 #include "private/malloc.h" 48 48 49 /* Magic used in heap headers. */ 50 #define HEAP_BLOCK_HEAD_MAGIC 0xBEEF0101 51 52 /* Magic used in heap footers. */ 53 #define HEAP_BLOCK_FOOT_MAGIC 0xBEEF0202 54 55 /** Allocation alignment (this also covers the alignment of fields 56 in the heap header and footer) */ 49 /** Magic used in heap headers. */ 50 #define HEAP_BLOCK_HEAD_MAGIC UINT32_C(0xBEEF0101) 51 52 /** Magic used in heap footers. */ 53 #define HEAP_BLOCK_FOOT_MAGIC UINT32_C(0xBEEF0202) 54 55 /** Magic used in heap descriptor. */ 56 #define HEAP_AREA_MAGIC UINT32_C(0xBEEFCAFE) 57 58 /** Allocation alignment. 59 * 60 * This also covers the alignment of fields 61 * in the heap header and footer. 62 * 63 */ 57 64 #define BASE_ALIGN 16 58 65 59 /** 60 * Either 4 * 256M on 32-bit architecures or 16 * 256M on 64-bit architectures 61 */ 62 #define MAX_HEAP_SIZE (sizeof(uintptr_t) << 28) 63 64 /** 65 * 66 */ 67 #define STRUCT_OVERHEAD (sizeof(heap_block_head_t) + sizeof(heap_block_foot_t)) 68 69 /** 70 * Calculate real size of a heap block (with header and footer) 66 /** Overhead of each heap block. */ 67 #define STRUCT_OVERHEAD \ 68 (sizeof(heap_block_head_t) + sizeof(heap_block_foot_t)) 69 70 /** Calculate real size of a heap block. 71 * 72 * Add header and footer size. 73 * 71 74 */ 72 75 #define GROSS_SIZE(size) ((size) + STRUCT_OVERHEAD) 73 76 74 /** 75 * Calculate net size of a heap block (without header and footer) 77 /** Calculate net size of a heap block. 78 * 79 * Subtract header and footer size. 80 * 76 81 */ 77 82 #define NET_SIZE(size) ((size) - STRUCT_OVERHEAD) 83 84 /** Get first block in heap area. 85 * 86 */ 87 #define AREA_FIRST_BLOCK(area) \ 88 (ALIGN_UP(((uintptr_t) (area)) + sizeof(heap_area_t), BASE_ALIGN)) 89 90 /** Get footer in heap block. 91 * 92 */ 93 #define BLOCK_FOOT(head) \ 94 ((heap_block_foot_t *) \ 95 (((uintptr_t) head) + head->size - sizeof(heap_block_foot_t))) 96 97 /** Heap area. 98 * 99 * The memory managed by the heap allocator is divided into 100 * multiple discontinuous heaps. Each heap is represented 101 * by a separate address space area which has this structure 102 * at its very beginning. 103 * 104 */ 105 typedef struct heap_area { 106 /** Start of the heap area (including this structure) 107 * 108 * Aligned on page boundary. 109 * 110 */ 111 void *start; 112 113 /** End of the heap area (aligned on page boundary) */ 114 void *end; 115 116 /** Next heap area */ 117 struct heap_area *next; 118 119 /** A magic value */ 120 uint32_t magic; 121 } heap_area_t; 78 122 79 123 /** Header of a heap block … … 87 131 bool free; 88 132 133 /** Heap area this block belongs to */ 134 heap_area_t *area; 135 89 136 /* A magic value to detect overwrite of heap header */ 90 137 uint32_t magic; … … 102 149 } heap_block_foot_t; 103 150 104 /** Linker heap symbol */ 105 extern char _heap; 151 /** First heap area */ 152 static heap_area_t *first_heap_area = NULL; 153 154 /** Last heap area */ 155 static heap_area_t *last_heap_area = NULL; 156 157 /** Next heap block to examine (next fit algorithm) */ 158 static heap_block_head_t *next = NULL; 106 159 107 160 /** Futex for thread-safe heap manipulation */ 108 161 static futex_t malloc_futex = FUTEX_INITIALIZER; 109 162 110 /** Address of heap start */111 static void *heap_start = 0;112 113 /** Address of heap end */114 static void *heap_end = 0;115 116 /** Maximum heap size */117 static size_t max_heap_size = (size_t) -1;118 119 /** Current number of pages of heap area */120 static size_t heap_pages = 0;121 122 163 /** Initialize a heap block 123 164 * 124 * Fill sin the structures related to a heap block.165 * Fill in the structures related to a heap block. 125 166 * Should be called only inside the critical section. 126 167 * … … 128 169 * @param size Size of the block including the header and the footer. 129 170 * @param free Indication of a free block. 130 * 131 */ 132 static void block_init(void *addr, size_t size, bool free) 171 * @param area Heap area the block belongs to. 172 * 173 */ 174 static void block_init(void *addr, size_t size, bool free, heap_area_t *area) 133 175 { 134 176 /* Calculate the position of the header and the footer */ 135 177 heap_block_head_t *head = (heap_block_head_t *) addr; 136 heap_block_foot_t *foot =137 (heap_block_foot_t *) (addr + size - sizeof(heap_block_foot_t));138 178 139 179 head->size = size; 140 180 head->free = free; 181 head->area = area; 141 182 head->magic = HEAP_BLOCK_HEAD_MAGIC; 183 184 heap_block_foot_t *foot = BLOCK_FOOT(head); 142 185 143 186 foot->size = size; … … 160 203 assert(head->magic == HEAP_BLOCK_HEAD_MAGIC); 161 204 162 heap_block_foot_t *foot = 163 (heap_block_foot_t *) (addr + head->size - sizeof(heap_block_foot_t)); 205 heap_block_foot_t *foot = BLOCK_FOOT(head); 164 206 165 207 assert(foot->magic == HEAP_BLOCK_FOOT_MAGIC); … … 167 209 } 168 210 169 /** Increase the heap area size 170 * 171 * Should be called only inside the critical section. 172 * 173 * @param size Number of bytes to grow the heap by. 174 * 175 */ 176 static bool grow_heap(size_t size) 211 /** Check a heap area structure 212 * 213 * @param addr Address of the heap area. 214 * 215 */ 216 static void area_check(void *addr) 217 { 218 heap_area_t *area = (heap_area_t *) addr; 219 220 assert(area->magic == HEAP_AREA_MAGIC); 221 assert(area->start < area->end); 222 assert(((uintptr_t) area->start % PAGE_SIZE) == 0); 223 assert(((uintptr_t) area->end % PAGE_SIZE) == 0); 224 } 225 226 /** Create new heap area 227 * 228 * @param start Preffered starting address of the new area. 229 * @param size Size of the area. 230 * 231 */ 232 static bool area_create(size_t size) 233 { 234 void *start = as_get_mappable_page(size); 235 if (start == NULL) 236 return false; 237 238 /* Align the heap area on page boundary */ 239 void *astart = (void *) ALIGN_UP((uintptr_t) start, PAGE_SIZE); 240 size_t asize = ALIGN_UP(size, PAGE_SIZE); 241 242 astart = as_area_create(astart, asize, AS_AREA_WRITE | AS_AREA_READ); 243 if (astart == (void *) -1) 244 return false; 245 246 heap_area_t *area = (heap_area_t *) astart; 247 248 area->start = astart; 249 area->end = (void *) 250 ALIGN_DOWN((uintptr_t) astart + asize, BASE_ALIGN); 251 area->next = NULL; 252 area->magic = HEAP_AREA_MAGIC; 253 254 void *block = (void *) AREA_FIRST_BLOCK(area); 255 size_t bsize = (size_t) (area->end - block); 256 257 block_init(block, bsize, true, area); 258 259 if (last_heap_area == NULL) { 260 first_heap_area = area; 261 last_heap_area = area; 262 } else { 263 last_heap_area->next = area; 264 last_heap_area = area; 265 } 266 267 return true; 268 } 269 270 /** Try to enlarge a heap area 271 * 272 * @param area Heap area to grow. 273 * @param size Gross size of item to allocate (bytes). 274 * 275 */ 276 static bool area_grow(heap_area_t *area, size_t size) 177 277 { 178 278 if (size == 0) 279 return true; 280 281 area_check(area); 282 283 size_t asize = ALIGN_UP((size_t) (area->end - area->start) + size, 284 PAGE_SIZE); 285 286 /* New heap area size */ 287 void *end = (void *) 288 ALIGN_DOWN((uintptr_t) area->start + asize, BASE_ALIGN); 289 290 /* Check for overflow */ 291 if (end < area->start) 179 292 return false; 180 181 if ((heap_start + size < heap_start) || (heap_end + size < heap_end)) 293 294 /* Resize the address space area */ 295 int ret = as_area_resize(area->start, asize, 0); 296 if (ret != EOK) 182 297 return false; 183 298 184 size_t heap_size = (size_t) (heap_end - heap_start); 185 186 if ((max_heap_size != (size_t) -1) && (heap_size + size > max_heap_size)) 187 return false; 188 189 size_t pages = (size - 1) / PAGE_SIZE + 1; 190 191 if (as_area_resize((void *) &_heap, (heap_pages + pages) * PAGE_SIZE, 0) 192 == EOK) { 193 void *end = (void *) ALIGN_DOWN(((uintptr_t) &_heap) + 194 (heap_pages + pages) * PAGE_SIZE, BASE_ALIGN); 195 block_init(heap_end, end - heap_end, true); 196 heap_pages += pages; 197 heap_end = end; 299 /* Add new free block */ 300 block_init(area->end, (size_t) (end - area->end), true, area); 301 302 /* Update heap area parameters */ 303 area->end = end; 304 305 return true; 306 } 307 308 /** Try to enlarge any of the heap areas 309 * 310 * @param size Gross size of item to allocate (bytes). 311 * 312 */ 313 static bool heap_grow(size_t size) 314 { 315 if (size == 0) 198 316 return true; 199 } 200 201 return false; 202 } 203 204 /** Decrease the heap area 205 * 206 * Should be called only inside the critical section. 207 * 208 * @param size Number of bytes to shrink the heap by. 209 * 210 */ 211 static void shrink_heap(void) 212 { 213 // TODO 317 318 /* First try to enlarge some existing area */ 319 heap_area_t *area; 320 for (area = first_heap_area; area != NULL; area = area->next) { 321 if (area_grow(area, size)) 322 return true; 323 } 324 325 /* Eventually try to create a new area */ 326 return area_create(AREA_FIRST_BLOCK(size)); 327 } 328 329 /** Try to shrink heap space 330 * 331 * In all cases the next pointer is reset. 332 * 333 */ 334 static void heap_shrink(void) 335 { 336 next = NULL; 214 337 } 215 338 … … 223 346 void __malloc_init(void) 224 347 { 225 if (!as_area_create((void *) &_heap, PAGE_SIZE, 226 AS_AREA_WRITE | AS_AREA_READ)) 348 if (!area_create(PAGE_SIZE)) 227 349 abort(); 228 229 heap_pages = 1;230 heap_start = (void *) ALIGN_UP((uintptr_t) &_heap, BASE_ALIGN);231 heap_end =232 (void *) ALIGN_DOWN(((uintptr_t) &_heap) + PAGE_SIZE, BASE_ALIGN);233 234 /* Make the entire area one large block. */235 block_init(heap_start, heap_end - heap_start, true);236 }237 238 /** Get maximum heap address239 *240 */241 uintptr_t get_max_heap_addr(void)242 {243 futex_down(&malloc_futex);244 245 if (max_heap_size == (size_t) -1)246 max_heap_size =247 max((size_t) (heap_end - heap_start), MAX_HEAP_SIZE);248 249 uintptr_t max_heap_addr = (uintptr_t) heap_start + max_heap_size;250 251 futex_up(&malloc_futex);252 253 return max_heap_addr;254 350 } 255 351 … … 273 369 /* Block big enough -> split. */ 274 370 void *next = ((void *) cur) + size; 275 block_init(next, cur->size - size, true );276 block_init(cur, size, false );371 block_init(next, cur->size - size, true, cur->area); 372 block_init(cur, size, false, cur->area); 277 373 } else { 278 374 /* Block too small -> use as is. */ … … 281 377 } 282 378 283 /** Allocate a memoryblock379 /** Allocate memory from heap area starting from given block 284 380 * 285 381 * Should be called only inside the critical section. 286 * 287 * @param size The size of the block to allocate.288 * @param align Memory address alignment.289 * 290 * @ return the address of the block or NULL when not enough memory.291 * 292 * /293 static void *malloc_internal(const size_t size, const size_t align) 294 { 295 if (align == 0) 296 return NULL; 297 298 size_t falign = lcm(align, BASE_ALIGN); 299 size_t real_size = GROSS_SIZE(ALIGN_UP(size, falign)); 300 301 bool grown = false; 302 void *result;303 304 loop: 305 result = NULL;306 heap_block_head_t *cur = (heap_block_head_t *) heap_start;307 308 while ((result == NULL) && ((void *) cur < heap_end)) {382 * As a side effect this function also sets the current 383 * pointer on successful allocation. 384 * 385 * @param area Heap area where to allocate from. 386 * @param first_block Starting heap block. 387 * @param final_block Heap block where to finish the search 388 * (may be NULL). 389 * @param real_size Gross number of bytes to allocate. 390 * @param falign Physical alignment of the block. 391 * 392 * @return Address of the allocated block or NULL on not enough memory. 393 * 394 */ 395 static void *malloc_area(heap_area_t *area, heap_block_head_t *first_block, 396 heap_block_head_t *final_block, size_t real_size, size_t falign) 397 { 398 area_check((void *) area); 399 assert((void *) first_block >= (void *) AREA_FIRST_BLOCK(area)); 400 assert((void *) first_block < area->end); 401 402 heap_block_head_t *cur; 403 for (cur = first_block; (void *) cur < area->end; 404 cur = (heap_block_head_t *) (((void *) cur) + cur->size)) { 309 405 block_check(cur); 406 407 /* Finish searching on the final block */ 408 if ((final_block != NULL) && (cur == final_block)) 409 break; 310 410 311 411 /* Try to find a block that is free and large enough. */ 312 412 if ((cur->free) && (cur->size >= real_size)) { 313 /* We have found a suitable block. 314 Check for alignment properties. */ 315 void *addr = ((void *) cur) + sizeof(heap_block_head_t); 316 void *aligned = (void *) ALIGN_UP(addr, falign); 413 /* 414 * We have found a suitable block. 415 * Check for alignment properties. 416 */ 417 void *addr = (void *) 418 ((uintptr_t) cur + sizeof(heap_block_head_t)); 419 void *aligned = (void *) 420 ALIGN_UP((uintptr_t) addr, falign); 317 421 318 422 if (addr == aligned) { 319 423 /* Exact block start including alignment. */ 320 424 split_mark(cur, real_size); 321 result = addr; 425 426 next = cur; 427 return addr; 322 428 } else { 323 429 /* Block start has to be aligned */ … … 325 431 326 432 if (cur->size >= real_size + excess) { 327 /* The current block is large enough to fit 328 data in including alignment */ 329 if ((void *) cur > heap_start) { 330 /* There is a block before the current block. 331 This previous block can be enlarged to compensate 332 for the alignment excess */ 333 heap_block_foot_t *prev_foot = 334 ((void *) cur) - sizeof(heap_block_foot_t); 433 /* 434 * The current block is large enough to fit 435 * data in (including alignment). 436 */ 437 if ((void *) cur > (void *) AREA_FIRST_BLOCK(area)) { 438 /* 439 * There is a block before the current block. 440 * This previous block can be enlarged to 441 * compensate for the alignment excess. 442 */ 443 heap_block_foot_t *prev_foot = (heap_block_foot_t *) 444 ((void *) cur - sizeof(heap_block_foot_t)); 335 445 336 heap_block_head_t *prev_head = 337 ( heap_block_head_t *) (((void *) cur)- prev_foot->size);446 heap_block_head_t *prev_head = (heap_block_head_t *) 447 ((void *) cur - prev_foot->size); 338 448 339 449 block_check(prev_head); … … 342 452 heap_block_head_t *next_head = ((void *) cur) + excess; 343 453 344 if ((!prev_head->free) && (excess >= STRUCT_OVERHEAD)) { 345 /* The previous block is not free and there is enough 346 space to fill in a new free block between the previous 347 and current block */ 348 block_init(cur, excess, true); 454 if ((!prev_head->free) && 455 (excess >= STRUCT_OVERHEAD)) { 456 /* 457 * The previous block is not free and there 458 * is enough free space left to fill in 459 * a new free block between the previous 460 * and current block. 461 */ 462 block_init(cur, excess, true, area); 349 463 } else { 350 /* The previous block is free (thus there is no need to 351 induce additional fragmentation to the heap) or the 352 excess is small, thus just enlarge the previous block */ 353 block_init(prev_head, prev_head->size + excess, prev_head->free); 464 /* 465 * The previous block is free (thus there 466 * is no need to induce additional 467 * fragmentation to the heap) or the 468 * excess is small. Therefore just enlarge 469 * the previous block. 470 */ 471 block_init(prev_head, prev_head->size + excess, 472 prev_head->free, area); 354 473 } 355 474 356 block_init(next_head, reduced_size, true );475 block_init(next_head, reduced_size, true, area); 357 476 split_mark(next_head, real_size); 358 result = aligned; 359 cur = next_head; 477 478 next = next_head; 479 return aligned; 360 480 } else { 361 /* The current block is the first block on the heap. 362 We have to make sure that the alignment excess 363 is large enough to fit a new free block just 364 before the current block */ 481 /* 482 * The current block is the first block 483 * in the heap area. We have to make sure 484 * that the alignment excess is large enough 485 * to fit a new free block just before the 486 * current block. 487 */ 365 488 while (excess < STRUCT_OVERHEAD) { 366 489 aligned += falign; … … 371 494 if (cur->size >= real_size + excess) { 372 495 size_t reduced_size = cur->size - excess; 373 cur = (heap_block_head_t *) (heap_start + excess); 496 cur = (heap_block_head_t *) 497 (AREA_FIRST_BLOCK(area) + excess); 374 498 375 block_init(heap_start, excess, true); 376 block_init(cur, reduced_size, true); 499 block_init((void *) AREA_FIRST_BLOCK(area), excess, 500 true, area); 501 block_init(cur, reduced_size, true, area); 377 502 split_mark(cur, real_size); 378 result = aligned; 503 504 next = cur; 505 return aligned; 379 506 } 380 507 } … … 382 509 } 383 510 } 384 385 /* Advance to the next block. */ 386 cur = (heap_block_head_t *) (((void *) cur) + cur->size); 387 } 388 389 if ((result == NULL) && (!grown)) { 390 if (grow_heap(real_size)) { 391 grown = true; 511 } 512 513 return NULL; 514 } 515 516 /** Allocate a memory block 517 * 518 * Should be called only inside the critical section. 519 * 520 * @param size The size of the block to allocate. 521 * @param align Memory address alignment. 522 * 523 * @return Address of the allocated block or NULL on not enough memory. 524 * 525 */ 526 static void *malloc_internal(const size_t size, const size_t align) 527 { 528 assert(first_heap_area != NULL); 529 530 if (align == 0) 531 return NULL; 532 533 size_t falign = lcm(align, BASE_ALIGN); 534 size_t real_size = GROSS_SIZE(ALIGN_UP(size, falign)); 535 536 bool retry = false; 537 heap_block_head_t *split; 538 539 loop: 540 541 /* Try the next fit approach */ 542 split = next; 543 544 if (split != NULL) { 545 void *addr = malloc_area(split->area, split, NULL, real_size, 546 falign); 547 548 if (addr != NULL) 549 return addr; 550 } 551 552 /* Search the entire heap */ 553 heap_area_t *area; 554 for (area = first_heap_area; area != NULL; area = area->next) { 555 heap_block_head_t *first = (heap_block_head_t *) 556 AREA_FIRST_BLOCK(area); 557 558 void *addr = malloc_area(area, first, split, real_size, 559 falign); 560 561 if (addr != NULL) 562 return addr; 563 } 564 565 if (!retry) { 566 /* Try to grow the heap space */ 567 if (heap_grow(real_size)) { 568 retry = true; 392 569 goto loop; 393 570 } 394 571 } 395 572 396 return result;573 return NULL; 397 574 } 398 575 … … 473 650 (heap_block_head_t *) (addr - sizeof(heap_block_head_t)); 474 651 475 assert((void *) head >= heap_start);476 assert((void *) head < heap_end);477 478 652 block_check(head); 479 653 assert(!head->free); 654 655 heap_area_t *area = head->area; 656 657 area_check(area); 658 assert((void *) head >= (void *) AREA_FIRST_BLOCK(area)); 659 assert((void *) head < area->end); 480 660 481 661 void *ptr = NULL; … … 487 667 /* Shrink */ 488 668 if (orig_size - real_size >= STRUCT_OVERHEAD) { 489 /* Split the original block to a full block 490 and a trailing free block */ 491 block_init((void *) head, real_size, false); 669 /* 670 * Split the original block to a full block 671 * and a trailing free block. 672 */ 673 block_init((void *) head, real_size, false, area); 492 674 block_init((void *) head + real_size, 493 orig_size - real_size, true );494 shrink_heap();675 orig_size - real_size, true, area); 676 heap_shrink(); 495 677 } 496 678 497 679 ptr = ((void *) head) + sizeof(heap_block_head_t); 498 680 } else { 499 /* Look at the next block. If it is free and the size is 500 sufficient then merge the two. Otherwise just allocate 501 a new block, copy the original data into it and 502 free the original block. */ 681 /* 682 * Look at the next block. If it is free and the size is 683 * sufficient then merge the two. Otherwise just allocate 684 * a new block, copy the original data into it and 685 * free the original block. 686 */ 503 687 heap_block_head_t *next_head = 504 688 (heap_block_head_t *) (((void *) head) + head->size); 505 689 506 if (((void *) next_head < heap_end) &&690 if (((void *) next_head < area->end) && 507 691 (head->size + next_head->size >= real_size) && 508 692 (next_head->free)) { 509 693 block_check(next_head); 510 block_init(head, head->size + next_head->size, false );694 block_init(head, head->size + next_head->size, false, area); 511 695 split_mark(head, real_size); 512 696 513 697 ptr = ((void *) head) + sizeof(heap_block_head_t); 698 next = NULL; 514 699 } else 515 700 reloc = true; … … 542 727 = (heap_block_head_t *) (addr - sizeof(heap_block_head_t)); 543 728 544 assert((void *) head >= heap_start);545 assert((void *) head < heap_end);546 547 729 block_check(head); 548 730 assert(!head->free); 731 732 heap_area_t *area = head->area; 733 734 area_check(area); 735 assert((void *) head >= (void *) AREA_FIRST_BLOCK(area)); 736 assert((void *) head < area->end); 549 737 550 738 /* Mark the block itself as free. */ … … 555 743 = (heap_block_head_t *) (((void *) head) + head->size); 556 744 557 if ((void *) next_head < heap_end) {745 if ((void *) next_head < area->end) { 558 746 block_check(next_head); 559 747 if (next_head->free) 560 block_init(head, head->size + next_head->size, true );748 block_init(head, head->size + next_head->size, true, area); 561 749 } 562 750 563 751 /* Look at the previous block. If it is free, merge the two. */ 564 if ((void *) head > heap_start) {752 if ((void *) head > (void *) AREA_FIRST_BLOCK(area)) { 565 753 heap_block_foot_t *prev_foot = 566 754 (heap_block_foot_t *) (((void *) head) - sizeof(heap_block_foot_t)); … … 572 760 573 761 if (prev_head->free) 574 block_init(prev_head, prev_head->size + head->size, true); 575 } 576 577 shrink_heap(); 762 block_init(prev_head, prev_head->size + head->size, true, 763 area); 764 } 765 766 heap_shrink(); 578 767 579 768 futex_up(&malloc_futex); -
uspace/lib/c/generic/private/libc.h
raa7dc64 r0c968a17 36 36 #define LIBC_PRIVATE_LIBC_H_ 37 37 38 extern void __entry(void); 39 extern void __main(void *) __attribute__((noreturn)); 38 40 extern int main(int, char *[]); 39 extern void __main(void *) __attribute__((noreturn));40 41 41 42 #endif -
uspace/lib/c/include/as.h
raa7dc64 r0c968a17 41 41 #include <libarch/config.h> 42 42 43 static inline size_t SIZE2PAGES(size_t size) 44 { 45 if (size == 0) 46 return 0; 47 48 return (size_t) ((size - 1) >> PAGE_WIDTH) + 1; 49 } 50 51 static inline size_t PAGES2SIZE(size_t pages) 52 { 53 return (size_t) (pages << PAGE_WIDTH); 54 } 55 43 56 extern void *as_area_create(void *address, size_t size, int flags); 44 57 extern int as_area_resize(void *address, size_t size, int flags); -
uspace/lib/c/include/malloc.h
raa7dc64 r0c968a17 38 38 #include <sys/types.h> 39 39 40 extern uintptr_t get_max_heap_addr(void);41 42 40 extern void *malloc(const size_t size) 43 41 __attribute__((malloc)); -
uspace/lib/c/include/unistd.h
raa7dc64 r0c968a17 44 44 #endif 45 45 46 #define getpagesize() (PAGE_SIZE)47 48 46 #ifndef SEEK_SET 49 47 #define SEEK_SET 0 … … 57 55 #define SEEK_END 2 58 56 #endif 57 58 #define getpagesize() (PAGE_SIZE) 59 59 60 60 extern int dup2(int oldfd, int newfd); -
uspace/srv/devman/devman.c
raa7dc64 r0c968a17 1215 1215 if (info != NULL) { 1216 1216 memset(info, 0, sizeof(dev_class_info_t)); 1217 li st_initialize(&info->dev_classes);1218 li st_initialize(&info->devmap_link);1219 li st_initialize(&info->link);1217 link_initialize(&info->dev_classes); 1218 link_initialize(&info->devmap_link); 1219 link_initialize(&info->link); 1220 1220 } 1221 1221 -
uspace/srv/devmap/devmap.c
raa7dc64 r0c968a17 423 423 */ 424 424 list_initialize(&driver->devices); 425 list_initialize(&(driver->drivers)); 425 426 link_initialize(&driver->drivers); 426 427 427 428 fibril_mutex_lock(&drivers_list_mutex); … … 538 539 } 539 540 540 li st_initialize(&(device->devices));541 li st_initialize(&(device->driver_devices));541 link_initialize(&device->devices); 542 link_initialize(&device->driver_devices); 542 543 543 544 /* Check that device is not already registered */ … … 942 943 } 943 944 944 li st_initialize(&(device->devices));945 li st_initialize(&(device->driver_devices));945 link_initialize(&device->devices); 946 link_initialize(&device->driver_devices); 946 947 947 948 /* Get unique device handle */ -
uspace/srv/fs/devfs/devfs_ops.c
raa7dc64 r0c968a17 130 130 { 131 131 devfs_node_t *node = (devfs_node_t *) pfn->data; 132 int ret; 132 133 133 134 if (node->handle == 0) { … … 145 146 146 147 if (str_cmp(devs[pos].name, component) == 0) { 148 ret = devfs_node_get_internal(rfn, DEV_HANDLE_NAMESPACE, devs[pos].handle); 147 149 free(devs); 148 return devfs_node_get_internal(rfn, DEV_HANDLE_NAMESPACE, devs[pos].handle);150 return ret; 149 151 } 150 152 } … … 162 164 for (pos = 0; pos < count; pos++) { 163 165 if (str_cmp(devs[pos].name, component) == 0) { 166 ret = devfs_node_get_internal(rfn, DEV_HANDLE_DEVICE, devs[pos].handle); 164 167 free(devs); 165 return devfs_node_get_internal(rfn, DEV_HANDLE_DEVICE, devs[pos].handle);168 return ret; 166 169 } 167 170 } … … 184 187 for (pos = 0; pos < count; pos++) { 185 188 if (str_cmp(devs[pos].name, component) == 0) { 189 ret = devfs_node_get_internal(rfn, DEV_HANDLE_DEVICE, devs[pos].handle); 186 190 free(devs); 187 return devfs_node_get_internal(rfn, DEV_HANDLE_DEVICE, devs[pos].handle);191 return ret; 188 192 } 189 193 } -
uspace/srv/loader/arch/abs32le/_link.ld.in
raa7dc64 r0c968a17 3 3 * is the base address and the special interp section. 4 4 */ 5 5 6 STARTUP(LIBC_PREFIX/arch/UARCH/src/entry.o) 6 7 ENTRY(__entry) … … 54 55 } :data 55 56 56 . = ALIGN(0x1000);57 58 _heap = .;59 60 57 /DISCARD/ : { 61 58 *(*); -
uspace/srv/loader/arch/amd64/_link.ld.in
raa7dc64 r0c968a17 54 54 } :data 55 55 56 . = ALIGN(0x1000);57 _heap = .;58 59 56 #ifdef CONFIG_LINE_DEBUG 60 57 .comment 0 : { *(.comment); } :debug -
uspace/srv/loader/arch/arm32/_link.ld.in
raa7dc64 r0c968a17 3 3 * is the base address. 4 4 */ 5 5 6 STARTUP(LIBC_PREFIX/arch/UARCH/src/entry.o) 6 7 ENTRY(__entry) … … 16 17 *(.interp); 17 18 } : interp 18 19 19 20 . = 0x70001000; 20 21 21 22 .init ALIGN(0x1000): SUBALIGN(0x1000) { 22 23 *(.init); 23 } : text 24 } :text 25 24 26 .text : { 25 27 *(.text); 26 28 *(.rodata*); 27 29 } :text 28 30 … … 32 34 *(.sdata); 33 35 } :data 36 34 37 .tdata : { 35 38 _tdata_start = .; … … 37 40 _tdata_end = .; 38 41 } :data 42 39 43 .tbss : { 40 44 _tbss_start = .; … … 42 46 _tbss_end = .; 43 47 } :data 48 44 49 _tls_alignment = MAX(ALIGNOF(.tdata), ALIGNOF(.tbss)); 50 45 51 .bss : { 46 52 *(.sbss); 47 53 *(.scommon); 48 49 54 *(COMMON); 55 *(.bss); 50 56 } :data 51 52 . = ALIGN(0x1000);53 _heap = .;54 57 55 58 /DISCARD/ : { 56 59 *(*); 57 60 } 58 59 61 } -
uspace/srv/loader/arch/ia32/_link.ld.in
raa7dc64 r0c968a17 54 54 } :data 55 55 56 . = ALIGN(0x1000);57 _heap = .;58 59 56 #ifdef CONFIG_LINE_DEBUG 60 57 .comment 0 : { *(.comment); } :debug -
uspace/srv/loader/arch/ia64/_link.ld.in
raa7dc64 r0c968a17 12 12 *(.interp); 13 13 } :interp 14 14 15 15 /* On Itanium code sections must be aligned to 16 bytes. */ 16 16 . = ALIGN(0x800000000 + SIZEOF_HEADERS, 16); 17 17 18 18 .init : { 19 19 *(.init); 20 } : text 20 } :text 21 21 22 .text : { 22 23 *(.text); 23 24 *(.rodata*); 24 25 } :text 25 26 26 27 . = . + 0x4000; 27 28 28 29 .got : { 29 30 _gp = .; 30 31 *(.got*); 31 } :data 32 } :data 33 32 34 .data : { 33 35 *(.opd); … … 35 37 *(.sdata); 36 38 } :data 39 37 40 .tdata : { 38 41 _tdata_start = .; … … 40 43 _tdata_end = .; 41 44 } :data 45 42 46 .tbss : { 43 47 _tbss_start = .; … … 45 49 _tbss_end = .; 46 50 } :data 51 47 52 _tls_alignment = MAX(ALIGNOF(.tdata), ALIGNOF(.tbss)); 53 48 54 .bss : { 49 55 *(.sbss); … … 52 58 *(.bss); 53 59 } :data 54 55 . = ALIGN(0x4000); 56 _heap = .; 57 60 58 61 /DISCARD/ : { 59 62 *(*); 60 63 } 61 64 } -
uspace/srv/loader/arch/mips32/_link.ld.in
raa7dc64 r0c968a17 3 3 * is the base address. 4 4 */ 5 5 6 STARTUP(LIBC_PREFIX/arch/UARCH/src/entry.o) 6 7 ENTRY(__entry) … … 16 17 *(.interp); 17 18 } :interp 18 19 19 20 . = 0x70004000; 20 21 … … 22 23 *(.init); 23 24 } :text 25 24 26 .text : { 25 27 *(.text); 26 28 *(.rodata*); 27 29 } :text 28 30 31 . = . + 0x4000; 32 29 33 .data : { 30 34 *(.data); 31 35 *(.data.rel*); 32 36 } :data 33 37 34 38 .got : { 35 39 _gp = .; 36 40 *(.got); 37 41 } :data 38 42 39 43 .tdata : { 40 44 _tdata_start = .; … … 42 46 _tdata_end = .; 43 47 } :data 48 44 49 .tbss : { 45 50 _tbss_start = .; … … 47 52 _tbss_end = .; 48 53 } :data 54 49 55 _tls_alignment = MAX(ALIGNOF(.tdata), ALIGNOF(.tbss)); 50 56 51 57 .sbss : { 52 58 *(.scommon); 53 59 *(.sbss); 54 } 60 } 61 55 62 .bss : { 56 63 *(.bss); 57 64 *(COMMON); 58 65 } :data 59 60 . = ALIGN(0x4000); 61 _heap = .; 62 66 63 67 /DISCARD/ : { 64 68 *(*); -
uspace/srv/loader/arch/ppc32/_link.ld.in
raa7dc64 r0c968a17 3 3 * is the base address. 4 4 */ 5 5 6 STARTUP(LIBC_PREFIX/arch/UARCH/src/entry.o) 6 7 ENTRY(__entry) … … 16 17 *(.interp); 17 18 } :interp 18 19 19 20 . = 0x70001000; 20 21 21 22 .init ALIGN(0x1000) : SUBALIGN(0x1000) { 22 23 *(.init); 23 24 } :text 25 24 26 .text : { 25 27 *(.text); … … 31 33 *(.sdata); 32 34 } :data 35 33 36 .tdata : { 34 37 _tdata_start = .; … … 36 39 _tdata_end = .; 37 40 } :data 41 38 42 .tbss : { 39 43 _tbss_start = .; … … 41 45 _tbss_end = .; 42 46 } :data 47 43 48 _tls_alignment = MAX(ALIGNOF(.tdata), ALIGNOF(.tbss)); 49 44 50 .bss : { 45 51 *(.sbss); … … 47 53 *(.bss); 48 54 } :data 49 50 . = ALIGN(0x1000);51 _heap = .;52 55 53 56 /DISCARD/ : { 54 57 *(*); 55 58 } 56 57 59 } -
uspace/srv/loader/arch/sparc64/_link.ld.in
raa7dc64 r0c968a17 12 12 *(.interp); 13 13 } :interp 14 14 15 15 . = 0x70004000 + SIZEOF_HEADERS; 16 16 17 17 .init : { 18 18 *(.init); 19 19 } :text 20 20 21 .text : { 21 22 *(.text); 22 23 *(.rodata*); 23 24 } :text 24 25 25 26 . = . + 0x4000; 26 27 27 28 .got : { 28 29 _gp = .; 29 30 *(.got*); 30 31 } :data 32 31 33 .data : { 32 34 *(.data); 33 35 *(.sdata); 34 36 } :data 37 35 38 .tdata : { 36 39 _tdata_start = .; … … 38 41 _tdata_end = .; 39 42 } :data 43 40 44 .tbss : { 41 45 _tbss_start = .; … … 43 47 _tbss_end = .; 44 48 } :data 49 45 50 _tls_alignment = MAX(ALIGNOF(.tdata), ALIGNOF(.tbss)); 51 46 52 .bss : { 47 53 *(.sbss); … … 49 55 *(.bss); 50 56 } :data 51 52 . = ALIGN(0x4000);53 _heap = .;54 57 55 58 /DISCARD/ : { 56 59 *(*); 57 60 } 58 59 61 } -
uspace/srv/loader/elf_load.c
raa7dc64 r0c968a17 109 109 int fd; 110 110 int rc; 111 111 112 112 fd = open(file_name, O_RDONLY); 113 113 if (fd < 0) { … … 344 344 seg_ptr = (void *) seg_addr; 345 345 346 DPRINTF("Load segment at addr %p, size 0x%x\n", seg_addr,346 DPRINTF("Load segment at addr %p, size 0x%x\n", (void *) seg_addr, 347 347 entry->p_memsz); 348 348 … … 372 372 mem_sz = entry->p_memsz + (entry->p_vaddr - base); 373 373 374 DPRINTF("Map to seg_addr=%p-%p.\n", seg_addr, 375 entry->p_vaddr + bias + ALIGN_UP(entry->p_memsz, PAGE_SIZE)); 374 DPRINTF("Map to seg_addr=%p-%p.\n", (void *) seg_addr, 375 (void *) (entry->p_vaddr + bias + 376 ALIGN_UP(entry->p_memsz, PAGE_SIZE))); 376 377 377 378 /* … … 386 387 } 387 388 388 DPRINTF("as_area_create(%p, 0x%x, %d) -> 0x%lx\n",389 base + bias, mem_sz, flags, (uintptr_t)a);389 DPRINTF("as_area_create(%p, %#zx, %d) -> %p\n", 390 (void *) (base + bias), mem_sz, flags, (void *) a); 390 391 391 392 /* … … 464 465 (void *)((uint8_t *)entry->sh_addr + elf->bias); 465 466 DPRINTF("Dynamic section found at %p.\n", 466 (uintptr_t)elf->info->dynamic);467 (void *) elf->info->dynamic); 467 468 break; 468 469 default:
Note:
See TracChangeset
for help on using the changeset viewer.