Changes in uspace/lib/c/generic/time.c [fbcdeb8:3e6a98c5] in mainline
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
uspace/lib/c/generic/time.c
rfbcdeb8 r3e6a98c5 1 1 /* 2 2 * Copyright (c) 2006 Ondrej Palkovsky 3 * Copyright (c) 2011 Petr Koupy 4 * Copyright (c) 2011 Jiri Zarevucky 3 5 * All rights reserved. 4 6 * … … 35 37 #include <sys/time.h> 36 38 #include <time.h> 37 #include < bool.h>39 #include <stdbool.h> 38 40 #include <libarch/barrier.h> 39 41 #include <macros.h> … … 43 45 #include <ddi.h> 44 46 #include <libc.h> 47 #include <stdint.h> 48 #include <stdio.h> 49 #include <ctype.h> 50 #include <assert.h> 51 #include <unistd.h> 52 #include <loc.h> 53 #include <device/clock_dev.h> 54 #include <malloc.h> 55 56 #define ASCTIME_BUF_LEN 26 45 57 46 58 /** Pointer to kernel shared variables with time */ … … 51 63 } *ktime = NULL; 52 64 65 /* Helper functions ***********************************************************/ 66 67 #define HOURS_PER_DAY (24) 68 #define MINS_PER_HOUR (60) 69 #define SECS_PER_MIN (60) 70 #define MINS_PER_DAY (MINS_PER_HOUR * HOURS_PER_DAY) 71 #define SECS_PER_HOUR (SECS_PER_MIN * MINS_PER_HOUR) 72 #define SECS_PER_DAY (SECS_PER_HOUR * HOURS_PER_DAY) 73 74 /** 75 * Checks whether the year is a leap year. 76 * 77 * @param year Year since 1900 (e.g. for 1970, the value is 70). 78 * @return true if year is a leap year, false otherwise 79 */ 80 static bool _is_leap_year(time_t year) 81 { 82 year += 1900; 83 84 if (year % 400 == 0) 85 return true; 86 if (year % 100 == 0) 87 return false; 88 if (year % 4 == 0) 89 return true; 90 return false; 91 } 92 93 /** 94 * Returns how many days there are in the given month of the given year. 95 * Note that year is only taken into account if month is February. 96 * 97 * @param year Year since 1900 (can be negative). 98 * @param mon Month of the year. 0 for January, 11 for December. 99 * @return Number of days in the specified month. 100 */ 101 static int _days_in_month(time_t year, time_t mon) 102 { 103 assert(mon >= 0 && mon <= 11); 104 105 static int month_days[] = 106 { 31, 0, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; 107 108 if (mon == 1) { 109 year += 1900; 110 /* february */ 111 return _is_leap_year(year) ? 29 : 28; 112 } else { 113 return month_days[mon]; 114 } 115 } 116 117 /** 118 * For specified year, month and day of month, returns which day of that year 119 * it is. 120 * 121 * For example, given date 2011-01-03, the corresponding expression is: 122 * _day_of_year(111, 0, 3) == 2 123 * 124 * @param year Year (year 1900 = 0, can be negative). 125 * @param mon Month (January = 0). 126 * @param mday Day of month (First day is 1). 127 * @return Day of year (First day is 0). 128 */ 129 static int _day_of_year(time_t year, time_t mon, time_t mday) 130 { 131 static int mdays[] = 132 { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; 133 static int leap_mdays[] = 134 { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335 }; 135 136 return (_is_leap_year(year) ? leap_mdays[mon] : mdays[mon]) + mday - 1; 137 } 138 139 /** 140 * Integer division that rounds to negative infinity. 141 * Used by some functions in this file. 142 * 143 * @param op1 Dividend. 144 * @param op2 Divisor. 145 * @return Rounded quotient. 146 */ 147 static time_t _floor_div(time_t op1, time_t op2) 148 { 149 if (op1 >= 0 || op1 % op2 == 0) { 150 return op1 / op2; 151 } else { 152 return op1 / op2 - 1; 153 } 154 } 155 156 /** 157 * Modulo that rounds to negative infinity. 158 * Used by some functions in this file. 159 * 160 * @param op1 Dividend. 161 * @param op2 Divisor. 162 * @return Remainder. 163 */ 164 static time_t _floor_mod(time_t op1, time_t op2) 165 { 166 int div = _floor_div(op1, op2); 167 168 /* (a / b) * b + a % b == a */ 169 /* thus, a % b == a - (a / b) * b */ 170 171 int result = op1 - div * op2; 172 173 /* Some paranoid checking to ensure I didn't make a mistake here. */ 174 assert(result >= 0); 175 assert(result < op2); 176 assert(div * op2 + result == op1); 177 178 return result; 179 } 180 181 /** 182 * Number of days since the Epoch. 183 * Epoch is 1970-01-01, which is also equal to day 0. 184 * 185 * @param year Year (year 1900 = 0, may be negative). 186 * @param mon Month (January = 0). 187 * @param mday Day of month (first day = 1). 188 * @return Number of days since the Epoch. 189 */ 190 static time_t _days_since_epoch(time_t year, time_t mon, time_t mday) 191 { 192 return (year - 70) * 365 + _floor_div(year - 69, 4) - 193 _floor_div(year - 1, 100) + _floor_div(year + 299, 400) + 194 _day_of_year(year, mon, mday); 195 } 196 197 /** 198 * Seconds since the Epoch. see also _days_since_epoch(). 199 * 200 * @param tm Normalized broken-down time. 201 * @return Number of seconds since the epoch, not counting leap seconds. 202 */ 203 static time_t _secs_since_epoch(const struct tm *tm) 204 { 205 return _days_since_epoch(tm->tm_year, tm->tm_mon, tm->tm_mday) * 206 SECS_PER_DAY + tm->tm_hour * SECS_PER_HOUR + 207 tm->tm_min * SECS_PER_MIN + tm->tm_sec; 208 } 209 210 /** 211 * Which day of week the specified date is. 212 * 213 * @param year Year (year 1900 = 0). 214 * @param mon Month (January = 0). 215 * @param mday Day of month (first = 1). 216 * @return Day of week (Sunday = 0). 217 */ 218 static int _day_of_week(time_t year, time_t mon, time_t mday) 219 { 220 /* 1970-01-01 is Thursday */ 221 return _floor_mod((_days_since_epoch(year, mon, mday) + 4), 7); 222 } 223 224 /** 225 * Normalizes the broken-down time and optionally adds specified amount of 226 * seconds. 227 * 228 * @param tm Broken-down time to normalize. 229 * @param sec_add Seconds to add. 230 * @return 0 on success, -1 on overflow 231 */ 232 static int _normalize_time(struct tm *tm, time_t sec_add) 233 { 234 // TODO: DST correction 235 236 /* Set initial values. */ 237 time_t sec = tm->tm_sec + sec_add; 238 time_t min = tm->tm_min; 239 time_t hour = tm->tm_hour; 240 time_t day = tm->tm_mday - 1; 241 time_t mon = tm->tm_mon; 242 time_t year = tm->tm_year; 243 244 /* Adjust time. */ 245 min += _floor_div(sec, SECS_PER_MIN); 246 sec = _floor_mod(sec, SECS_PER_MIN); 247 hour += _floor_div(min, MINS_PER_HOUR); 248 min = _floor_mod(min, MINS_PER_HOUR); 249 day += _floor_div(hour, HOURS_PER_DAY); 250 hour = _floor_mod(hour, HOURS_PER_DAY); 251 252 /* Adjust month. */ 253 year += _floor_div(mon, 12); 254 mon = _floor_mod(mon, 12); 255 256 /* Now the difficult part - days of month. */ 257 258 /* First, deal with whole cycles of 400 years = 146097 days. */ 259 year += _floor_div(day, 146097) * 400; 260 day = _floor_mod(day, 146097); 261 262 /* Then, go in one year steps. */ 263 if (mon <= 1) { 264 /* January and February. */ 265 while (day > 365) { 266 day -= _is_leap_year(year) ? 366 : 365; 267 year++; 268 } 269 } else { 270 /* Rest of the year. */ 271 while (day > 365) { 272 day -= _is_leap_year(year + 1) ? 366 : 365; 273 year++; 274 } 275 } 276 277 /* Finally, finish it off month per month. */ 278 while (day >= _days_in_month(year, mon)) { 279 day -= _days_in_month(year, mon); 280 mon++; 281 if (mon >= 12) { 282 mon -= 12; 283 year++; 284 } 285 } 286 287 /* Calculate the remaining two fields. */ 288 tm->tm_yday = _day_of_year(year, mon, day + 1); 289 tm->tm_wday = _day_of_week(year, mon, day + 1); 290 291 /* And put the values back to the struct. */ 292 tm->tm_sec = (int) sec; 293 tm->tm_min = (int) min; 294 tm->tm_hour = (int) hour; 295 tm->tm_mday = (int) day + 1; 296 tm->tm_mon = (int) mon; 297 298 /* Casts to work around libc brain-damage. */ 299 if (year > ((int)INT_MAX) || year < ((int)INT_MIN)) { 300 tm->tm_year = (year < 0) ? ((int)INT_MIN) : ((int)INT_MAX); 301 return -1; 302 } 303 304 tm->tm_year = (int) year; 305 return 0; 306 } 307 308 /** 309 * Which day the week-based year starts on, relative to the first calendar day. 310 * E.g. if the year starts on December 31st, the return value is -1. 311 * 312 * @param Year since 1900. 313 * @return Offset of week-based year relative to calendar year. 314 */ 315 static int _wbyear_offset(int year) 316 { 317 int start_wday = _day_of_week(year, 0, 1); 318 return _floor_mod(4 - start_wday, 7) - 3; 319 } 320 321 /** 322 * Returns week-based year of the specified time. 323 * 324 * @param tm Normalized broken-down time. 325 * @return Week-based year. 326 */ 327 static int _wbyear(const struct tm *tm) 328 { 329 int day = tm->tm_yday - _wbyear_offset(tm->tm_year); 330 if (day < 0) { 331 /* Last week of previous year. */ 332 return tm->tm_year - 1; 333 } 334 if (day > 364 + _is_leap_year(tm->tm_year)) { 335 /* First week of next year. */ 336 return tm->tm_year + 1; 337 } 338 /* All the other days are in the calendar year. */ 339 return tm->tm_year; 340 } 341 342 /** 343 * Week number of the year, assuming weeks start on sunday. 344 * The first Sunday of January is the first day of week 1; 345 * days in the new year before this are in week 0. 346 * 347 * @param tm Normalized broken-down time. 348 * @return The week number (0 - 53). 349 */ 350 static int _sun_week_number(const struct tm *tm) 351 { 352 int first_day = (7 - _day_of_week(tm->tm_year, 0, 1)) % 7; 353 return (tm->tm_yday - first_day + 7) / 7; 354 } 355 356 /** 357 * Week number of the year, assuming weeks start on monday. 358 * If the week containing January 1st has four or more days in the new year, 359 * then it is considered week 1. Otherwise, it is the last week of the previous 360 * year, and the next week is week 1. Both January 4th and the first Thursday 361 * of January are always in week 1. 362 * 363 * @param tm Normalized broken-down time. 364 * @return The week number (1 - 53). 365 */ 366 static int _iso_week_number(const struct tm *tm) 367 { 368 int day = tm->tm_yday - _wbyear_offset(tm->tm_year); 369 if (day < 0) { 370 /* Last week of previous year. */ 371 return 53; 372 } 373 if (day > 364 + _is_leap_year(tm->tm_year)) { 374 /* First week of next year. */ 375 return 1; 376 } 377 /* All the other days give correct answer. */ 378 return (day / 7 + 1); 379 } 380 381 /** 382 * Week number of the year, assuming weeks start on monday. 383 * The first Monday of January is the first day of week 1; 384 * days in the new year before this are in week 0. 385 * 386 * @param tm Normalized broken-down time. 387 * @return The week number (0 - 53). 388 */ 389 static int _mon_week_number(const struct tm *tm) 390 { 391 int first_day = (1 - _day_of_week(tm->tm_year, 0, 1)) % 7; 392 return (tm->tm_yday - first_day + 7) / 7; 393 } 394 395 /******************************************************************************/ 396 397 53 398 /** Add microseconds to given timeval. 54 399 * … … 138 483 */ 139 484 int gettimeofday(struct timeval *tv, struct timezone *tz) 485 { 486 int rc; 487 struct tm t; 488 category_id_t cat_id; 489 size_t svc_cnt; 490 service_id_t *svc_ids = NULL; 491 service_id_t svc_id; 492 char *svc_name = NULL; 493 494 static async_sess_t *clock_conn = NULL; 495 496 if (tz) { 497 tz->tz_minuteswest = 0; 498 tz->tz_dsttime = DST_NONE; 499 } 500 501 if (clock_conn == NULL) { 502 rc = loc_category_get_id("clock", &cat_id, IPC_FLAG_BLOCKING); 503 if (rc != EOK) 504 goto ret_uptime; 505 506 rc = loc_category_get_svcs(cat_id, &svc_ids, &svc_cnt); 507 if (rc != EOK) 508 goto ret_uptime; 509 510 if (svc_cnt == 0) 511 goto ret_uptime; 512 513 rc = loc_service_get_name(svc_ids[0], &svc_name); 514 if (rc != EOK) 515 goto ret_uptime; 516 517 rc = loc_service_get_id(svc_name, &svc_id, 0); 518 if (rc != EOK) 519 goto ret_uptime; 520 521 clock_conn = loc_service_connect(EXCHANGE_SERIALIZE, 522 svc_id, IPC_FLAG_BLOCKING); 523 if (!clock_conn) 524 goto ret_uptime; 525 } 526 527 rc = clock_dev_time_get(clock_conn, &t); 528 if (rc != EOK) 529 goto ret_uptime; 530 531 tv->tv_usec = 0; 532 tv->tv_sec = mktime(&t); 533 534 free(svc_name); 535 free(svc_ids); 536 537 return EOK; 538 539 ret_uptime: 540 541 free(svc_name); 542 free(svc_ids); 543 544 return getuptime(tv); 545 } 546 547 int getuptime(struct timeval *tv) 140 548 { 141 549 if (ktime == NULL) { … … 159 567 } 160 568 161 if (tz) {162 tz->tz_minuteswest = 0;163 tz->tz_dsttime = DST_NONE;164 }165 166 569 sysarg_t s2 = ktime->seconds2; 167 570 … … 177 580 } else 178 581 tv->tv_sec = s1; 179 582 180 583 return 0; 181 584 } … … 228 631 } 229 632 633 /** 634 * This function first normalizes the provided broken-down time 635 * (moves all values to their proper bounds) and then tries to 636 * calculate the appropriate time_t representation. 637 * 638 * @param tm Broken-down time. 639 * @return time_t representation of the time, undefined value on overflow. 640 */ 641 time_t mktime(struct tm *tm) 642 { 643 // TODO: take DST flag into account 644 // TODO: detect overflow 645 646 _normalize_time(tm, 0); 647 return _secs_since_epoch(tm); 648 } 649 650 /** 651 * Convert time and date to a string, based on a specified format and 652 * current locale. 653 * 654 * @param s Buffer to write string to. 655 * @param maxsize Size of the buffer. 656 * @param format Format of the output. 657 * @param tm Broken-down time to format. 658 * @return Number of bytes written. 659 */ 660 size_t strftime(char *restrict s, size_t maxsize, 661 const char *restrict format, const struct tm *restrict tm) 662 { 663 assert(s != NULL); 664 assert(format != NULL); 665 assert(tm != NULL); 666 667 // TODO: use locale 668 static const char *wday_abbr[] = { 669 "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" 670 }; 671 static const char *wday[] = { 672 "Sunday", "Monday", "Tuesday", "Wednesday", 673 "Thursday", "Friday", "Saturday" 674 }; 675 static const char *mon_abbr[] = { 676 "Jan", "Feb", "Mar", "Apr", "May", "Jun", 677 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" 678 }; 679 static const char *mon[] = { 680 "January", "February", "March", "April", "May", "June", "July", 681 "August", "September", "October", "November", "December" 682 }; 683 684 if (maxsize < 1) { 685 return 0; 686 } 687 688 char *ptr = s; 689 size_t consumed; 690 size_t remaining = maxsize; 691 692 #define append(...) { \ 693 /* FIXME: this requires POSIX-correct snprintf */ \ 694 /* otherwise it won't work with non-ascii chars */ \ 695 consumed = snprintf(ptr, remaining, __VA_ARGS__); \ 696 if (consumed >= remaining) { \ 697 return 0; \ 698 } \ 699 ptr += consumed; \ 700 remaining -= consumed; \ 701 } 702 703 #define recurse(fmt) { \ 704 consumed = strftime(ptr, remaining, fmt, tm); \ 705 if (consumed == 0) { \ 706 return 0; \ 707 } \ 708 ptr += consumed; \ 709 remaining -= consumed; \ 710 } 711 712 #define TO_12H(hour) (((hour) > 12) ? ((hour) - 12) : \ 713 (((hour) == 0) ? 12 : (hour))) 714 715 while (*format != '\0') { 716 if (*format != '%') { 717 append("%c", *format); 718 format++; 719 continue; 720 } 721 722 format++; 723 if (*format == '0' || *format == '+') { 724 // TODO: padding 725 format++; 726 } 727 while (isdigit(*format)) { 728 // TODO: padding 729 format++; 730 } 731 if (*format == 'O' || *format == 'E') { 732 // TODO: locale's alternative format 733 format++; 734 } 735 736 switch (*format) { 737 case 'a': 738 append("%s", wday_abbr[tm->tm_wday]); break; 739 case 'A': 740 append("%s", wday[tm->tm_wday]); break; 741 case 'b': 742 append("%s", mon_abbr[tm->tm_mon]); break; 743 case 'B': 744 append("%s", mon[tm->tm_mon]); break; 745 case 'c': 746 // TODO: locale-specific datetime format 747 recurse("%Y-%m-%d %H:%M:%S"); break; 748 case 'C': 749 append("%02d", (1900 + tm->tm_year) / 100); break; 750 case 'd': 751 append("%02d", tm->tm_mday); break; 752 case 'D': 753 recurse("%m/%d/%y"); break; 754 case 'e': 755 append("%2d", tm->tm_mday); break; 756 case 'F': 757 recurse("%+4Y-%m-%d"); break; 758 case 'g': 759 append("%02d", _wbyear(tm) % 100); break; 760 case 'G': 761 append("%d", _wbyear(tm)); break; 762 case 'h': 763 recurse("%b"); break; 764 case 'H': 765 append("%02d", tm->tm_hour); break; 766 case 'I': 767 append("%02d", TO_12H(tm->tm_hour)); break; 768 case 'j': 769 append("%03d", tm->tm_yday); break; 770 case 'k': 771 append("%2d", tm->tm_hour); break; 772 case 'l': 773 append("%2d", TO_12H(tm->tm_hour)); break; 774 case 'm': 775 append("%02d", tm->tm_mon); break; 776 case 'M': 777 append("%02d", tm->tm_min); break; 778 case 'n': 779 append("\n"); break; 780 case 'p': 781 append("%s", tm->tm_hour < 12 ? "AM" : "PM"); break; 782 case 'P': 783 append("%s", tm->tm_hour < 12 ? "am" : "PM"); break; 784 case 'r': 785 recurse("%I:%M:%S %p"); break; 786 case 'R': 787 recurse("%H:%M"); break; 788 case 's': 789 append("%ld", _secs_since_epoch(tm)); break; 790 case 'S': 791 append("%02d", tm->tm_sec); break; 792 case 't': 793 append("\t"); break; 794 case 'T': 795 recurse("%H:%M:%S"); break; 796 case 'u': 797 append("%d", (tm->tm_wday == 0) ? 7 : tm->tm_wday); 798 break; 799 case 'U': 800 append("%02d", _sun_week_number(tm)); break; 801 case 'V': 802 append("%02d", _iso_week_number(tm)); break; 803 case 'w': 804 append("%d", tm->tm_wday); break; 805 case 'W': 806 append("%02d", _mon_week_number(tm)); break; 807 case 'x': 808 // TODO: locale-specific date format 809 recurse("%Y-%m-%d"); break; 810 case 'X': 811 // TODO: locale-specific time format 812 recurse("%H:%M:%S"); break; 813 case 'y': 814 append("%02d", tm->tm_year % 100); break; 815 case 'Y': 816 append("%d", 1900 + tm->tm_year); break; 817 case 'z': 818 // TODO: timezone 819 break; 820 case 'Z': 821 // TODO: timezone 822 break; 823 case '%': 824 append("%%"); 825 break; 826 default: 827 /* Invalid specifier, print verbatim. */ 828 while (*format != '%') { 829 format--; 830 } 831 append("%%"); 832 break; 833 } 834 format++; 835 } 836 837 #undef append 838 #undef recurse 839 840 return maxsize - remaining; 841 } 842 843 844 /** Converts a time value to a broken-down UTC time 845 * 846 * @param time Time to convert 847 * @param result Structure to store the result to 848 * 849 * @return EOK or a negative error code 850 */ 851 int time_utc2tm(const time_t time, struct tm *restrict result) 852 { 853 assert(result != NULL); 854 855 /* Set result to epoch. */ 856 result->tm_sec = 0; 857 result->tm_min = 0; 858 result->tm_hour = 0; 859 result->tm_mday = 1; 860 result->tm_mon = 0; 861 result->tm_year = 70; /* 1970 */ 862 863 if (_normalize_time(result, time) == -1) 864 return EOVERFLOW; 865 866 return EOK; 867 } 868 869 /** Converts a time value to a null terminated string of the form 870 * "Wed Jun 30 21:49:08 1993\n" expressed in UTC. 871 * 872 * @param time Time to convert. 873 * @param buf Buffer to store the string to, must be at least 874 * ASCTIME_BUF_LEN bytes long. 875 * 876 * @return EOK or a negative error code. 877 */ 878 int time_utc2str(const time_t time, char *restrict buf) 879 { 880 struct tm t; 881 int r; 882 883 if ((r = time_utc2tm(time, &t)) != EOK) 884 return r; 885 886 time_tm2str(&t, buf); 887 return EOK; 888 } 889 890 891 /** 892 * Converts broken-down time to a string in format 893 * "Sun Jan 1 00:00:00 1970\n". (Obsolete) 894 * 895 * @param timeptr Broken-down time structure. 896 * @param buf Buffer to store string to, must be at least ASCTIME_BUF_LEN 897 * bytes long. 898 */ 899 void time_tm2str(const struct tm *restrict timeptr, char *restrict buf) 900 { 901 assert(timeptr != NULL); 902 assert(buf != NULL); 903 904 static const char *wday[] = { 905 "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" 906 }; 907 static const char *mon[] = { 908 "Jan", "Feb", "Mar", "Apr", "May", "Jun", 909 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" 910 }; 911 912 snprintf(buf, ASCTIME_BUF_LEN, "%s %s %2d %02d:%02d:%02d %d\n", 913 wday[timeptr->tm_wday], 914 mon[timeptr->tm_mon], 915 timeptr->tm_mday, timeptr->tm_hour, 916 timeptr->tm_min, timeptr->tm_sec, 917 1900 + timeptr->tm_year); 918 } 919 920 /** 921 * Converts a time value to a broken-down local time, expressed relative 922 * to the user's specified timezone. 923 * 924 * @param timer Time to convert. 925 * @param result Structure to store the result to. 926 * 927 * @return EOK on success or a negative error code. 928 */ 929 int time_local2tm(const time_t time, struct tm *restrict result) 930 { 931 // TODO: deal with timezone 932 // currently assumes system and all times are in GMT 933 934 /* Set result to epoch. */ 935 result->tm_sec = 0; 936 result->tm_min = 0; 937 result->tm_hour = 0; 938 result->tm_mday = 1; 939 result->tm_mon = 0; 940 result->tm_year = 70; /* 1970 */ 941 942 if (_normalize_time(result, time) == -1) 943 return EOVERFLOW; 944 945 return EOK; 946 } 947 948 /** 949 * Converts the calendar time to a null terminated string 950 * of the form "Wed Jun 30 21:49:08 1993\n" expressed relative to the 951 * user's specified timezone. 952 * 953 * @param timer Time to convert. 954 * @param buf Buffer to store the string to. Must be at least 955 * ASCTIME_BUF_LEN bytes long. 956 * 957 * @return EOK on success or a negative error code. 958 */ 959 int time_local2str(const time_t time, char *buf) 960 { 961 struct tm loctime; 962 int r; 963 964 if ((r = time_local2tm(time, &loctime)) != EOK) 965 return r; 966 967 time_tm2str(&loctime, buf); 968 969 return EOK; 970 } 971 972 /** 973 * Calculate the difference between two times, in seconds. 974 * 975 * @param time1 First time. 976 * @param time0 Second time. 977 * @return Time in seconds. 978 */ 979 double difftime(time_t time1, time_t time0) 980 { 981 return (double) (time1 - time0); 982 } 983 230 984 /** @} 231 985 */
Note:
See TracChangeset
for help on using the changeset viewer.