Changeset b5e68c8 in mainline for uspace/lib/c/generic/malloc.c
- Timestamp:
- 2011-05-12T16:49:44Z (14 years ago)
- Branches:
- lfn, master, serial, ticket/834-toolchain-update, topic/msim-upgrade, topic/simplify-dev-export
- Children:
- f36787d7
- Parents:
- e80329d6 (diff), 750636a (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the(diff)
links above to see all the changes relative to each parent. - File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
uspace/lib/c/generic/malloc.c
re80329d6 rb5e68c8 44 44 #include <mem.h> 45 45 #include <futex.h> 46 #include <stdlib.h> 46 47 #include <adt/gcdlcm.h> 47 48 /* Magic used in heap headers. */ 49 #define HEAP_BLOCK_HEAD_MAGIC 0xBEEF0101 50 51 /* Magic used in heap footers. */ 52 #define HEAP_BLOCK_FOOT_MAGIC 0xBEEF0202 53 54 /** Allocation alignment (this also covers the alignment of fields 55 in the heap header and footer) */ 48 #include "private/malloc.h" 49 50 /** Magic used in heap headers. */ 51 #define HEAP_BLOCK_HEAD_MAGIC UINT32_C(0xBEEF0101) 52 53 /** Magic used in heap footers. */ 54 #define HEAP_BLOCK_FOOT_MAGIC UINT32_C(0xBEEF0202) 55 56 /** Magic used in heap descriptor. */ 57 #define HEAP_AREA_MAGIC UINT32_C(0xBEEFCAFE) 58 59 /** Allocation alignment. 60 * 61 * This also covers the alignment of fields 62 * in the heap header and footer. 63 * 64 */ 56 65 #define BASE_ALIGN 16 57 66 58 /** 59 * Either 4 * 256M on 32-bit architecures or 16 * 256M on 64-bit architectures 60 */ 61 #define MAX_HEAP_SIZE (sizeof(uintptr_t) << 28) 62 63 /** 64 * 65 */ 66 #define STRUCT_OVERHEAD (sizeof(heap_block_head_t) + sizeof(heap_block_foot_t)) 67 68 /** 69 * Calculate real size of a heap block (with header and footer) 67 /** Overhead of each heap block. */ 68 #define STRUCT_OVERHEAD \ 69 (sizeof(heap_block_head_t) + sizeof(heap_block_foot_t)) 70 71 /** Calculate real size of a heap block. 72 * 73 * Add header and footer size. 74 * 70 75 */ 71 76 #define GROSS_SIZE(size) ((size) + STRUCT_OVERHEAD) 72 77 73 /** 74 * Calculate net size of a heap block (without header and footer) 78 /** Calculate net size of a heap block. 79 * 80 * Subtract header and footer size. 81 * 75 82 */ 76 83 #define NET_SIZE(size) ((size) - STRUCT_OVERHEAD) 84 85 /** Get first block in heap area. 86 * 87 */ 88 #define AREA_FIRST_BLOCK(area) \ 89 (ALIGN_UP(((uintptr_t) (area)) + sizeof(heap_area_t), BASE_ALIGN)) 90 91 /** Get footer in heap block. 92 * 93 */ 94 #define BLOCK_FOOT(head) \ 95 ((heap_block_foot_t *) \ 96 (((uintptr_t) head) + head->size - sizeof(heap_block_foot_t))) 97 98 /** Heap area. 99 * 100 * The memory managed by the heap allocator is divided into 101 * multiple discontinuous heaps. Each heap is represented 102 * by a separate address space area which has this structure 103 * at its very beginning. 104 * 105 */ 106 typedef struct heap_area { 107 /** Start of the heap area (including this structure) 108 * 109 * Aligned on page boundary. 110 * 111 */ 112 void *start; 113 114 /** End of the heap area (aligned on page boundary) */ 115 void *end; 116 117 /** Next heap area */ 118 struct heap_area *next; 119 120 /** A magic value */ 121 uint32_t magic; 122 } heap_area_t; 77 123 78 124 /** Header of a heap block … … 86 132 bool free; 87 133 134 /** Heap area this block belongs to */ 135 heap_area_t *area; 136 88 137 /* A magic value to detect overwrite of heap header */ 89 138 uint32_t magic; … … 101 150 } heap_block_foot_t; 102 151 103 /** Linker heap symbol */ 104 extern char _heap; 152 /** First heap area */ 153 static heap_area_t *first_heap_area = NULL; 154 155 /** Last heap area */ 156 static heap_area_t *last_heap_area = NULL; 157 158 /** Next heap block to examine (next fit algorithm) */ 159 static heap_block_head_t *next = NULL; 105 160 106 161 /** Futex for thread-safe heap manipulation */ 107 162 static futex_t malloc_futex = FUTEX_INITIALIZER; 108 163 109 /** Address of heap start */110 static void *heap_start = 0;111 112 /** Address of heap end */113 static void *heap_end = 0;114 115 /** Maximum heap size */116 static size_t max_heap_size = (size_t) -1;117 118 /** Current number of pages of heap area */119 static size_t heap_pages = 0;120 121 164 /** Initialize a heap block 122 165 * 123 * Fill sin the structures related to a heap block.166 * Fill in the structures related to a heap block. 124 167 * Should be called only inside the critical section. 125 168 * … … 127 170 * @param size Size of the block including the header and the footer. 128 171 * @param free Indication of a free block. 129 * 130 */ 131 static void block_init(void *addr, size_t size, bool free) 172 * @param area Heap area the block belongs to. 173 * 174 */ 175 static void block_init(void *addr, size_t size, bool free, heap_area_t *area) 132 176 { 133 177 /* Calculate the position of the header and the footer */ 134 178 heap_block_head_t *head = (heap_block_head_t *) addr; 135 heap_block_foot_t *foot =136 (heap_block_foot_t *) (addr + size - sizeof(heap_block_foot_t));137 179 138 180 head->size = size; 139 181 head->free = free; 182 head->area = area; 140 183 head->magic = HEAP_BLOCK_HEAD_MAGIC; 184 185 heap_block_foot_t *foot = BLOCK_FOOT(head); 141 186 142 187 foot->size = size; … … 159 204 assert(head->magic == HEAP_BLOCK_HEAD_MAGIC); 160 205 161 heap_block_foot_t *foot = 162 (heap_block_foot_t *) (addr + head->size - sizeof(heap_block_foot_t)); 206 heap_block_foot_t *foot = BLOCK_FOOT(head); 163 207 164 208 assert(foot->magic == HEAP_BLOCK_FOOT_MAGIC); … … 166 210 } 167 211 168 /** Increase the heap area size 169 * 170 * Should be called only inside the critical section. 171 * 172 * @param size Number of bytes to grow the heap by. 173 * 174 */ 175 static bool grow_heap(size_t size) 212 /** Check a heap area structure 213 * 214 * @param addr Address of the heap area. 215 * 216 */ 217 static void area_check(void *addr) 218 { 219 heap_area_t *area = (heap_area_t *) addr; 220 221 assert(area->magic == HEAP_AREA_MAGIC); 222 assert(area->start < area->end); 223 assert(((uintptr_t) area->start % PAGE_SIZE) == 0); 224 assert(((uintptr_t) area->end % PAGE_SIZE) == 0); 225 } 226 227 /** Create new heap area 228 * 229 * @param start Preffered starting address of the new area. 230 * @param size Size of the area. 231 * 232 */ 233 static bool area_create(size_t size) 234 { 235 void *start = as_get_mappable_page(size); 236 if (start == NULL) 237 return false; 238 239 /* Align the heap area on page boundary */ 240 void *astart = (void *) ALIGN_UP((uintptr_t) start, PAGE_SIZE); 241 size_t asize = ALIGN_UP(size, PAGE_SIZE); 242 243 astart = as_area_create(astart, asize, AS_AREA_WRITE | AS_AREA_READ); 244 if (astart == (void *) -1) 245 return false; 246 247 heap_area_t *area = (heap_area_t *) astart; 248 249 area->start = astart; 250 area->end = (void *) 251 ALIGN_DOWN((uintptr_t) astart + asize, BASE_ALIGN); 252 area->next = NULL; 253 area->magic = HEAP_AREA_MAGIC; 254 255 void *block = (void *) AREA_FIRST_BLOCK(area); 256 size_t bsize = (size_t) (area->end - block); 257 258 block_init(block, bsize, true, area); 259 260 if (last_heap_area == NULL) { 261 first_heap_area = area; 262 last_heap_area = area; 263 } else { 264 last_heap_area->next = area; 265 last_heap_area = area; 266 } 267 268 return true; 269 } 270 271 /** Try to enlarge a heap area 272 * 273 * @param area Heap area to grow. 274 * @param size Gross size of item to allocate (bytes). 275 * 276 */ 277 static bool area_grow(heap_area_t *area, size_t size) 176 278 { 177 279 if (size == 0) 280 return true; 281 282 area_check(area); 283 284 size_t asize = ALIGN_UP((size_t) (area->end - area->start) + size, 285 PAGE_SIZE); 286 287 /* New heap area size */ 288 void *end = (void *) 289 ALIGN_DOWN((uintptr_t) area->start + asize, BASE_ALIGN); 290 291 /* Check for overflow */ 292 if (end < area->start) 178 293 return false; 179 180 if ((heap_start + size < heap_start) || (heap_end + size < heap_end)) 294 295 /* Resize the address space area */ 296 int ret = as_area_resize(area->start, asize, 0); 297 if (ret != EOK) 181 298 return false; 182 299 183 size_t heap_size = (size_t) (heap_end - heap_start); 184 185 if ((max_heap_size != (size_t) -1) && (heap_size + size > max_heap_size)) 186 return false; 187 188 size_t pages = (size - 1) / PAGE_SIZE + 1; 189 190 if (as_area_resize((void *) &_heap, (heap_pages + pages) * PAGE_SIZE, 0) 191 == EOK) { 192 void *end = (void *) ALIGN_DOWN(((uintptr_t) &_heap) + 193 (heap_pages + pages) * PAGE_SIZE, BASE_ALIGN); 194 block_init(heap_end, end - heap_end, true); 195 heap_pages += pages; 196 heap_end = end; 300 /* Add new free block */ 301 block_init(area->end, (size_t) (end - area->end), true, area); 302 303 /* Update heap area parameters */ 304 area->end = end; 305 306 return true; 307 } 308 309 /** Try to enlarge any of the heap areas 310 * 311 * @param size Gross size of item to allocate (bytes). 312 * 313 */ 314 static bool heap_grow(size_t size) 315 { 316 if (size == 0) 197 317 return true; 198 } 199 200 return false; 201 } 202 203 /** Decrease the heap area 204 * 205 * Should be called only inside the critical section. 206 * 207 * @param size Number of bytes to shrink the heap by. 208 * 209 */ 210 static void shrink_heap(void) 211 { 212 // TODO 318 319 /* First try to enlarge some existing area */ 320 heap_area_t *area; 321 for (area = first_heap_area; area != NULL; area = area->next) { 322 if (area_grow(area, size)) 323 return true; 324 } 325 326 /* Eventually try to create a new area */ 327 return area_create(AREA_FIRST_BLOCK(size)); 328 } 329 330 /** Try to shrink heap space 331 * 332 * In all cases the next pointer is reset. 333 * 334 */ 335 static void heap_shrink(void) 336 { 337 next = NULL; 213 338 } 214 339 215 340 /** Initialize the heap allocator 216 341 * 217 * Find how much physical memory we have and create 218 * the heap management structures that mark the whole 219 * physical memory as a single free block. 220 * 221 */ 222 void __heap_init(void) 223 { 224 futex_down(&malloc_futex); 225 226 if (as_area_create((void *) &_heap, PAGE_SIZE, 227 AS_AREA_WRITE | AS_AREA_READ)) { 228 heap_pages = 1; 229 heap_start = (void *) ALIGN_UP((uintptr_t) &_heap, BASE_ALIGN); 230 heap_end = 231 (void *) ALIGN_DOWN(((uintptr_t) &_heap) + PAGE_SIZE, BASE_ALIGN); 232 233 /* Make the entire area one large block. */ 234 block_init(heap_start, heap_end - heap_start, true); 235 } 236 237 futex_up(&malloc_futex); 238 } 239 240 /** Get maximum heap address 241 * 242 */ 243 uintptr_t get_max_heap_addr(void) 244 { 245 futex_down(&malloc_futex); 246 247 if (max_heap_size == (size_t) -1) 248 max_heap_size = 249 max((size_t) (heap_end - heap_start), MAX_HEAP_SIZE); 250 251 uintptr_t max_heap_addr = (uintptr_t) heap_start + max_heap_size; 252 253 futex_up(&malloc_futex); 254 255 return max_heap_addr; 342 * Create initial heap memory area. This routine is 343 * only called from libc initialization, thus we do not 344 * take any locks. 345 * 346 */ 347 void __malloc_init(void) 348 { 349 if (!area_create(PAGE_SIZE)) 350 abort(); 256 351 } 257 352 … … 275 370 /* Block big enough -> split. */ 276 371 void *next = ((void *) cur) + size; 277 block_init(next, cur->size - size, true );278 block_init(cur, size, false );372 block_init(next, cur->size - size, true, cur->area); 373 block_init(cur, size, false, cur->area); 279 374 } else { 280 375 /* Block too small -> use as is. */ … … 283 378 } 284 379 285 /** Allocate a memoryblock380 /** Allocate memory from heap area starting from given block 286 381 * 287 382 * Should be called only inside the critical section. 288 * 289 * @param size The size of the block to allocate.290 * @param align Memory address alignment.291 * 292 * @ return the address of the block or NULL when not enough memory.293 * 294 * /295 static void *malloc_internal(const size_t size, const size_t align) 296 { 297 if (align == 0) 298 return NULL; 299 300 size_t falign = lcm(align, BASE_ALIGN); 301 size_t real_size = GROSS_SIZE(ALIGN_UP(size, falign)); 302 303 bool grown = false; 304 void *result;305 306 loop: 307 result = NULL;308 heap_block_head_t *cur = (heap_block_head_t *) heap_start;309 310 while ((result == NULL) && ((void *) cur < heap_end)) {383 * As a side effect this function also sets the current 384 * pointer on successful allocation. 385 * 386 * @param area Heap area where to allocate from. 387 * @param first_block Starting heap block. 388 * @param final_block Heap block where to finish the search 389 * (may be NULL). 390 * @param real_size Gross number of bytes to allocate. 391 * @param falign Physical alignment of the block. 392 * 393 * @return Address of the allocated block or NULL on not enough memory. 394 * 395 */ 396 static void *malloc_area(heap_area_t *area, heap_block_head_t *first_block, 397 heap_block_head_t *final_block, size_t real_size, size_t falign) 398 { 399 area_check((void *) area); 400 assert((void *) first_block >= (void *) AREA_FIRST_BLOCK(area)); 401 assert((void *) first_block < area->end); 402 403 heap_block_head_t *cur; 404 for (cur = first_block; (void *) cur < area->end; 405 cur = (heap_block_head_t *) (((void *) cur) + cur->size)) { 311 406 block_check(cur); 407 408 /* Finish searching on the final block */ 409 if ((final_block != NULL) && (cur == final_block)) 410 break; 312 411 313 412 /* Try to find a block that is free and large enough. */ 314 413 if ((cur->free) && (cur->size >= real_size)) { 315 /* We have found a suitable block. 316 Check for alignment properties. */ 317 void *addr = ((void *) cur) + sizeof(heap_block_head_t); 318 void *aligned = (void *) ALIGN_UP(addr, falign); 414 /* 415 * We have found a suitable block. 416 * Check for alignment properties. 417 */ 418 void *addr = (void *) 419 ((uintptr_t) cur + sizeof(heap_block_head_t)); 420 void *aligned = (void *) 421 ALIGN_UP((uintptr_t) addr, falign); 319 422 320 423 if (addr == aligned) { 321 424 /* Exact block start including alignment. */ 322 425 split_mark(cur, real_size); 323 result = addr; 426 427 next = cur; 428 return addr; 324 429 } else { 325 430 /* Block start has to be aligned */ … … 327 432 328 433 if (cur->size >= real_size + excess) { 329 /* The current block is large enough to fit 330 data in including alignment */ 331 if ((void *) cur > heap_start) { 332 /* There is a block before the current block. 333 This previous block can be enlarged to compensate 334 for the alignment excess */ 335 heap_block_foot_t *prev_foot = 336 ((void *) cur) - sizeof(heap_block_foot_t); 434 /* 435 * The current block is large enough to fit 436 * data in (including alignment). 437 */ 438 if ((void *) cur > (void *) AREA_FIRST_BLOCK(area)) { 439 /* 440 * There is a block before the current block. 441 * This previous block can be enlarged to 442 * compensate for the alignment excess. 443 */ 444 heap_block_foot_t *prev_foot = (heap_block_foot_t *) 445 ((void *) cur - sizeof(heap_block_foot_t)); 337 446 338 heap_block_head_t *prev_head = 339 ( heap_block_head_t *) (((void *) cur)- prev_foot->size);447 heap_block_head_t *prev_head = (heap_block_head_t *) 448 ((void *) cur - prev_foot->size); 340 449 341 450 block_check(prev_head); … … 344 453 heap_block_head_t *next_head = ((void *) cur) + excess; 345 454 346 if ((!prev_head->free) && (excess >= STRUCT_OVERHEAD)) { 347 /* The previous block is not free and there is enough 348 space to fill in a new free block between the previous 349 and current block */ 350 block_init(cur, excess, true); 455 if ((!prev_head->free) && 456 (excess >= STRUCT_OVERHEAD)) { 457 /* 458 * The previous block is not free and there 459 * is enough free space left to fill in 460 * a new free block between the previous 461 * and current block. 462 */ 463 block_init(cur, excess, true, area); 351 464 } else { 352 /* The previous block is free (thus there is no need to 353 induce additional fragmentation to the heap) or the 354 excess is small, thus just enlarge the previous block */ 355 block_init(prev_head, prev_head->size + excess, prev_head->free); 465 /* 466 * The previous block is free (thus there 467 * is no need to induce additional 468 * fragmentation to the heap) or the 469 * excess is small. Therefore just enlarge 470 * the previous block. 471 */ 472 block_init(prev_head, prev_head->size + excess, 473 prev_head->free, area); 356 474 } 357 475 358 block_init(next_head, reduced_size, true );476 block_init(next_head, reduced_size, true, area); 359 477 split_mark(next_head, real_size); 360 result = aligned; 361 cur = next_head; 478 479 next = next_head; 480 return aligned; 362 481 } else { 363 /* The current block is the first block on the heap. 364 We have to make sure that the alignment excess 365 is large enough to fit a new free block just 366 before the current block */ 482 /* 483 * The current block is the first block 484 * in the heap area. We have to make sure 485 * that the alignment excess is large enough 486 * to fit a new free block just before the 487 * current block. 488 */ 367 489 while (excess < STRUCT_OVERHEAD) { 368 490 aligned += falign; … … 373 495 if (cur->size >= real_size + excess) { 374 496 size_t reduced_size = cur->size - excess; 375 cur = (heap_block_head_t *) (heap_start + excess); 497 cur = (heap_block_head_t *) 498 (AREA_FIRST_BLOCK(area) + excess); 376 499 377 block_init(heap_start, excess, true); 378 block_init(cur, reduced_size, true); 500 block_init((void *) AREA_FIRST_BLOCK(area), excess, 501 true, area); 502 block_init(cur, reduced_size, true, area); 379 503 split_mark(cur, real_size); 380 result = aligned; 504 505 next = cur; 506 return aligned; 381 507 } 382 508 } … … 384 510 } 385 511 } 386 387 /* Advance to the next block. */ 388 cur = (heap_block_head_t *) (((void *) cur) + cur->size); 389 } 390 391 if ((result == NULL) && (!grown)) { 392 if (grow_heap(real_size)) { 393 grown = true; 512 } 513 514 return NULL; 515 } 516 517 /** Allocate a memory block 518 * 519 * Should be called only inside the critical section. 520 * 521 * @param size The size of the block to allocate. 522 * @param align Memory address alignment. 523 * 524 * @return Address of the allocated block or NULL on not enough memory. 525 * 526 */ 527 static void *malloc_internal(const size_t size, const size_t align) 528 { 529 assert(first_heap_area != NULL); 530 531 if (align == 0) 532 return NULL; 533 534 size_t falign = lcm(align, BASE_ALIGN); 535 size_t real_size = GROSS_SIZE(ALIGN_UP(size, falign)); 536 537 bool retry = false; 538 heap_block_head_t *split; 539 540 loop: 541 542 /* Try the next fit approach */ 543 split = next; 544 545 if (split != NULL) { 546 void *addr = malloc_area(split->area, split, NULL, real_size, 547 falign); 548 549 if (addr != NULL) 550 return addr; 551 } 552 553 /* Search the entire heap */ 554 heap_area_t *area; 555 for (area = first_heap_area; area != NULL; area = area->next) { 556 heap_block_head_t *first = (heap_block_head_t *) 557 AREA_FIRST_BLOCK(area); 558 559 void *addr = malloc_area(area, first, split, real_size, 560 falign); 561 562 if (addr != NULL) 563 return addr; 564 } 565 566 if (!retry) { 567 /* Try to grow the heap space */ 568 if (heap_grow(real_size)) { 569 retry = true; 394 570 goto loop; 395 571 } 396 572 } 397 573 398 return result;574 return NULL; 399 575 } 400 576 … … 475 651 (heap_block_head_t *) (addr - sizeof(heap_block_head_t)); 476 652 477 assert((void *) head >= heap_start);478 assert((void *) head < heap_end);479 480 653 block_check(head); 481 654 assert(!head->free); 655 656 heap_area_t *area = head->area; 657 658 area_check(area); 659 assert((void *) head >= (void *) AREA_FIRST_BLOCK(area)); 660 assert((void *) head < area->end); 482 661 483 662 void *ptr = NULL; … … 489 668 /* Shrink */ 490 669 if (orig_size - real_size >= STRUCT_OVERHEAD) { 491 /* Split the original block to a full block 492 and a trailing free block */ 493 block_init((void *) head, real_size, false); 670 /* 671 * Split the original block to a full block 672 * and a trailing free block. 673 */ 674 block_init((void *) head, real_size, false, area); 494 675 block_init((void *) head + real_size, 495 orig_size - real_size, true );496 shrink_heap();676 orig_size - real_size, true, area); 677 heap_shrink(); 497 678 } 498 679 499 680 ptr = ((void *) head) + sizeof(heap_block_head_t); 500 681 } else { 501 /* Look at the next block. If it is free and the size is 502 sufficient then merge the two. Otherwise just allocate 503 a new block, copy the original data into it and 504 free the original block. */ 682 /* 683 * Look at the next block. If it is free and the size is 684 * sufficient then merge the two. Otherwise just allocate 685 * a new block, copy the original data into it and 686 * free the original block. 687 */ 505 688 heap_block_head_t *next_head = 506 689 (heap_block_head_t *) (((void *) head) + head->size); 507 690 508 if (((void *) next_head < heap_end) &&691 if (((void *) next_head < area->end) && 509 692 (head->size + next_head->size >= real_size) && 510 693 (next_head->free)) { 511 694 block_check(next_head); 512 block_init(head, head->size + next_head->size, false );695 block_init(head, head->size + next_head->size, false, area); 513 696 split_mark(head, real_size); 514 697 515 698 ptr = ((void *) head) + sizeof(heap_block_head_t); 699 next = NULL; 516 700 } else 517 701 reloc = true; … … 544 728 = (heap_block_head_t *) (addr - sizeof(heap_block_head_t)); 545 729 546 assert((void *) head >= heap_start);547 assert((void *) head < heap_end);548 549 730 block_check(head); 550 731 assert(!head->free); 732 733 heap_area_t *area = head->area; 734 735 area_check(area); 736 assert((void *) head >= (void *) AREA_FIRST_BLOCK(area)); 737 assert((void *) head < area->end); 551 738 552 739 /* Mark the block itself as free. */ … … 557 744 = (heap_block_head_t *) (((void *) head) + head->size); 558 745 559 if ((void *) next_head < heap_end) {746 if ((void *) next_head < area->end) { 560 747 block_check(next_head); 561 748 if (next_head->free) 562 block_init(head, head->size + next_head->size, true );749 block_init(head, head->size + next_head->size, true, area); 563 750 } 564 751 565 752 /* Look at the previous block. If it is free, merge the two. */ 566 if ((void *) head > heap_start) {753 if ((void *) head > (void *) AREA_FIRST_BLOCK(area)) { 567 754 heap_block_foot_t *prev_foot = 568 755 (heap_block_foot_t *) (((void *) head) - sizeof(heap_block_foot_t)); … … 574 761 575 762 if (prev_head->free) 576 block_init(prev_head, prev_head->size + head->size, true); 577 } 578 579 shrink_heap(); 763 block_init(prev_head, prev_head->size + head->size, true, 764 area); 765 } 766 767 heap_shrink(); 580 768 581 769 futex_up(&malloc_futex);
Note:
See TracChangeset
for help on using the changeset viewer.