- Timestamp:
- 2011-06-01T09:04:08Z (14 years ago)
- Branches:
- lfn, master, serial, ticket/834-toolchain-update, topic/msim-upgrade, topic/simplify-dev-export
- Children:
- 0a7627b, c9f0975
- Parents:
- e51a514 (diff), 5d1b3aa (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the(diff)
links above to see all the changes relative to each parent. - Location:
- uspace
- Files:
-
- 8 added
- 24 edited
- 1 moved
Legend:
- Unmodified
- Added
- Removed
-
uspace/Makefile
re51a514 rdf29f24 94 94 drv/rootvirt \ 95 95 drv/test1 \ 96 drv/test2 96 drv/test2 \ 97 drv/test3 97 98 98 99 ## Networking -
uspace/app/tester/Makefile
re51a514 rdf29f24 48 48 ipc/ping_pong.c \ 49 49 loop/loop1.c \ 50 mm/common.c \ 50 51 mm/malloc1.c \ 51 52 mm/malloc2.c \ 52 53 mm/mapping1.c \ 54 mm/malloc3.c \ 53 55 devs/devman1.c \ 56 devs/devman2.c \ 54 57 hw/misc/virtchar1.c \ 55 58 hw/serial/serial1.c -
uspace/app/tester/devs/devman2.c
re51a514 rdf29f24 1 1 /* 2 * Copyright (c) 20 09 Martin Decky2 * Copyright (c) 2011 Vojtech Horky 3 3 * All rights reserved. 4 4 * … … 27 27 */ 28 28 29 #include <test.h> 29 /** @addtogroup tester 30 * @brief Test devman service. 31 * @{ 32 */ 33 /** 34 * @file 35 */ 30 36 31 const char *test_sse1(void) 37 #include <inttypes.h> 38 #include <errno.h> 39 #include <str_error.h> 40 #include <sys/types.h> 41 #include <async.h> 42 #include <devman.h> 43 #include <str.h> 44 #include <vfs/vfs.h> 45 #include <sys/stat.h> 46 #include <fcntl.h> 47 #include "../tester.h" 48 49 #define DEVICE_CLASS "test3" 50 51 const char *test_devman2(void) 32 52 { 33 return NULL; 53 size_t idx = 1; 54 int rc = EOK; 55 const char *err_msg = NULL; 56 char *path = NULL; 57 while (rc == EOK) { 58 rc = asprintf(&path, "/dev/class/%s\\%zu", DEVICE_CLASS, idx); 59 if (rc < 0) { 60 continue; 61 } 62 int fd = open(path, O_RDONLY); 63 if (fd < 0) { 64 TPRINTF("Failed opening `%s': %s.\n", 65 path, str_error(fd)); 66 rc = fd; 67 err_msg = "Failed opening file"; 68 continue; 69 } 70 int phone = fd_phone(fd); 71 close(fd); 72 if (phone < 0) { 73 TPRINTF("Failed opening phone: %s.\n", str_error(phone)); 74 rc = phone; 75 err_msg = "Failed opening file descriptor phone"; 76 continue; 77 } 78 async_hangup(phone); 79 TPRINTF("Path `%s' okay.\n", path); 80 free(path); 81 idx++; 82 rc = EOK; 83 } 84 85 if (path != NULL) { 86 free(path); 87 } 88 89 return err_msg; 34 90 } 91 92 /** @} 93 */ -
uspace/app/tester/mm/malloc1.c
re51a514 rdf29f24 30 30 31 31 #include <stdio.h> 32 #include <unistd.h>33 32 #include <stdlib.h> 34 #include <malloc.h>33 #include "common.h" 35 34 #include "../tester.h" 36 35 … … 45 44 */ 46 45 47 /**48 * sizeof_array49 * @array array to determine the size of50 *51 * Returns the size of @array in array elements.52 */53 #define sizeof_array(array) \54 (sizeof(array) / sizeof((array)[0]))55 56 #define MAX_ALLOC (16 * 1024 * 1024)57 58 /*59 * Subphase control structures: subphase termination conditions,60 * probabilities of individual actions, subphase control structure.61 */62 63 typedef struct {64 unsigned int max_cycles;65 unsigned int no_memory;66 unsigned int no_allocated;67 } sp_term_cond_s;68 69 typedef struct {70 unsigned int alloc;71 unsigned int free;72 } sp_action_prob_s;73 74 typedef struct {75 const char *name;76 sp_term_cond_s cond;77 sp_action_prob_s prob;78 } subphase_s;79 80 81 /*82 * Phase control structures: The minimum and maximum block size that83 * can be allocated during the phase execution, phase control structure.84 */85 86 typedef struct {87 size_t min_block_size;88 size_t max_block_size;89 } ph_alloc_size_s;90 91 typedef struct {92 const char *name;93 ph_alloc_size_s alloc;94 subphase_s *subphases;95 } phase_s;96 97 98 46 /* 99 47 * Subphases are defined separately here. This is for two reasons: … … 101 49 * how many subphases a phase contains. 102 50 */ 103 static subphase_ ssubphases_32B[] = {51 static subphase_t subphases_32B[] = { 104 52 { 105 53 .name = "Allocation", … … 140 88 }; 141 89 142 static subphase_ ssubphases_128K[] = {90 static subphase_t subphases_128K[] = { 143 91 { 144 92 .name = "Allocation", … … 179 127 }; 180 128 181 static subphase_ ssubphases_default[] = {129 static subphase_t subphases_default[] = { 182 130 { 183 131 .name = "Allocation", … … 217 165 } 218 166 }; 219 220 167 221 168 /* 222 169 * Phase definitions. 223 170 */ 224 static phase_ sphases[] = {171 static phase_t phases[] = { 225 172 { 226 173 .name = "32 B memory blocks", … … 257 204 }; 258 205 259 260 /* 261 * Global error flag. The flag is set if an error 262 * is encountered (overlapping blocks, inconsistent 263 * block data, etc.) 264 */ 265 static bool error_flag = false; 266 267 /* 268 * Memory accounting: the amount of allocated memory and the 269 * number and list of allocated blocks. 270 */ 271 static size_t mem_allocated; 272 static size_t mem_blocks_count; 273 274 static LIST_INITIALIZE(mem_blocks); 275 276 typedef struct { 277 /* Address of the start of the block */ 278 void *addr; 279 280 /* Size of the memory block */ 281 size_t size; 282 283 /* link to other blocks */ 284 link_t link; 285 } mem_block_s; 286 287 typedef mem_block_s *mem_block_t; 288 289 290 /** init_mem 291 * 292 * Initializes the memory accounting structures. 293 * 294 */ 295 static void init_mem(void) 206 static void do_subphase(phase_t *phase, subphase_t *subphase) 296 207 { 297 mem_allocated = 0; 298 mem_blocks_count = 0; 299 } 300 301 302 static bool overlap_match(link_t *entry, void *addr, size_t size) 303 { 304 mem_block_t mblk = list_get_instance(entry, mem_block_s, link); 305 306 /* Entry block control structure <mbeg, mend) */ 307 uint8_t *mbeg = (uint8_t *) mblk; 308 uint8_t *mend = (uint8_t *) mblk + sizeof(mem_block_s); 309 310 /* Entry block memory <bbeg, bend) */ 311 uint8_t *bbeg = (uint8_t *) mblk->addr; 312 uint8_t *bend = (uint8_t *) mblk->addr + mblk->size; 313 314 /* Data block <dbeg, dend) */ 315 uint8_t *dbeg = (uint8_t *) addr; 316 uint8_t *dend = (uint8_t *) addr + size; 317 318 /* Check for overlaps */ 319 if (((mbeg >= dbeg) && (mbeg < dend)) || 320 ((mend > dbeg) && (mend <= dend)) || 321 ((bbeg >= dbeg) && (bbeg < dend)) || 322 ((bend > dbeg) && (bend <= dend))) 323 return true; 324 325 return false; 326 } 327 328 329 /** test_overlap 330 * 331 * Test whether a block starting at @addr overlaps with another, previously 332 * allocated memory block or its control structure. 333 * 334 * @param addr Initial address of the block 335 * @param size Size of the block 336 * 337 * @return false if the block does not overlap. 338 * 339 */ 340 static int test_overlap(void *addr, size_t size) 341 { 342 link_t *entry; 343 bool fnd = false; 344 345 for (entry = mem_blocks.next; entry != &mem_blocks; entry = entry->next) { 346 if (overlap_match(entry, addr, size)) { 347 fnd = true; 348 break; 349 } 350 } 351 352 return fnd; 353 } 354 355 356 /** checked_malloc 357 * 358 * Allocate @size bytes of memory and check whether the chunk comes 359 * from the non-mapped memory region and whether the chunk overlaps 360 * with other, previously allocated, chunks. 361 * 362 * @param size Amount of memory to allocate 363 * 364 * @return NULL if the allocation failed. Sets the global error_flag to 365 * true if the allocation succeeded but is illegal. 366 * 367 */ 368 static void *checked_malloc(size_t size) 369 { 370 void *data; 371 372 /* Allocate the chunk of memory */ 373 data = malloc(size); 374 if (data == NULL) 375 return NULL; 376 377 /* Check for overlaps with other chunks */ 378 if (test_overlap(data, size)) { 379 TPRINTF("\nError: Allocated block overlaps with another " 380 "previously allocated block.\n"); 381 error_flag = true; 382 } 383 384 return data; 385 } 386 387 388 /** alloc_block 389 * 390 * Allocate a block of memory of @size bytes and add record about it into 391 * the mem_blocks list. Return a pointer to the block holder structure or 392 * NULL if the allocation failed. 393 * 394 * If the allocation is illegal (e.g. the memory does not come from the 395 * right region or some of the allocated blocks overlap with others), 396 * set the global error_flag. 397 * 398 * @param size Size of the memory block 399 * 400 */ 401 static mem_block_t alloc_block(size_t size) 402 { 403 /* Check for allocation limit */ 404 if (mem_allocated >= MAX_ALLOC) 405 return NULL; 406 407 /* Allocate the block holder */ 408 mem_block_t block = (mem_block_t) checked_malloc(sizeof(mem_block_s)); 409 if (block == NULL) 410 return NULL; 411 412 link_initialize(&block->link); 413 414 /* Allocate the block memory */ 415 block->addr = checked_malloc(size); 416 if (block->addr == NULL) { 417 free(block); 418 return NULL; 419 } 420 421 block->size = size; 422 423 /* Register the allocated block */ 424 list_append(&block->link, &mem_blocks); 425 mem_allocated += size + sizeof(mem_block_s); 426 mem_blocks_count++; 427 428 return block; 429 } 430 431 432 /** free_block 433 * 434 * Free the block of memory and the block control structure allocated by 435 * alloc_block. Set the global error_flag if an error occurs. 436 * 437 * @param block Block control structure 438 * 439 */ 440 static void free_block(mem_block_t block) 441 { 442 /* Unregister the block */ 443 list_remove(&block->link); 444 mem_allocated -= block->size + sizeof(mem_block_s); 445 mem_blocks_count--; 446 447 /* Free the memory */ 448 free(block->addr); 449 free(block); 450 } 451 452 453 /** expected_value 454 * 455 * Compute the expected value of a byte located at @pos in memory 456 * block described by @blk. 457 * 458 * @param blk Memory block control structure 459 * @param pos Position in the memory block data area 460 * 461 */ 462 static inline uint8_t expected_value(mem_block_t blk, uint8_t *pos) 463 { 464 return ((unsigned long) blk ^ (unsigned long) pos) & 0xff; 465 } 466 467 468 /** fill_block 469 * 470 * Fill the memory block controlled by @blk with data. 471 * 472 * @param blk Memory block control structure 473 * 474 */ 475 static void fill_block(mem_block_t blk) 476 { 477 uint8_t *pos; 478 uint8_t *end; 479 480 for (pos = blk->addr, end = pos + blk->size; pos < end; pos++) 481 *pos = expected_value(blk, pos); 482 } 483 484 485 /** check_block 486 * 487 * Check whether the block @blk contains the data it was filled with. 488 * Set global error_flag if an error occurs. 489 * 490 * @param blk Memory block control structure 491 * 492 */ 493 static void check_block(mem_block_t blk) 494 { 495 uint8_t *pos; 496 uint8_t *end; 497 498 for (pos = blk->addr, end = pos + blk->size; pos < end; pos++) { 499 if (*pos != expected_value (blk, pos)) { 500 TPRINTF("\nError: Corrupted content of a data block.\n"); 501 error_flag = true; 502 return; 503 } 504 } 505 } 506 507 508 static link_t *list_get_nth(link_t *list, unsigned int i) 509 { 510 unsigned int cnt = 0; 511 link_t *entry; 512 513 for (entry = list->next; entry != list; entry = entry->next) { 514 if (cnt == i) 515 return entry; 516 517 cnt++; 518 } 519 520 return NULL; 521 } 522 523 524 /** get_random_block 525 * 526 * Select a random memory block from the list of allocated blocks. 527 * 528 * @return Block control structure or NULL if the list is empty. 529 * 530 */ 531 static mem_block_t get_random_block(void) 532 { 533 if (mem_blocks_count == 0) 534 return NULL; 535 536 unsigned int blkidx = rand() % mem_blocks_count; 537 link_t *entry = list_get_nth(&mem_blocks, blkidx); 538 539 if (entry == NULL) { 540 TPRINTF("\nError: Corrupted list of allocated memory blocks.\n"); 541 error_flag = true; 542 } 543 544 return list_get_instance(entry, mem_block_s, link); 545 } 546 547 548 #define RETURN_IF_ERROR \ 549 { \ 550 if (error_flag) \ 551 return; \ 552 } 553 554 555 static void do_subphase(phase_s *phase, subphase_s *subphase) 556 { 557 unsigned int cycles; 558 for (cycles = 0; /* always */; cycles++) { 559 560 if (subphase->cond.max_cycles && 561 cycles >= subphase->cond.max_cycles) { 208 for (unsigned int cycles = 0; /* always */; cycles++) { 209 210 if ((subphase->cond.max_cycles) && 211 (cycles >= subphase->cond.max_cycles)) { 562 212 /* 563 213 * We have performed the required number of … … 572 222 unsigned int rnd = rand() % 100; 573 223 if (rnd < subphase->prob.alloc) { 574 /* Compute a random number lying in interval <min_block_size, max_block_size> */ 224 /* 225 * Compute a random number lying in interval 226 * <min_block_size, max_block_size> 227 */ 575 228 int alloc = phase->alloc.min_block_size + 576 229 (rand() % (phase->alloc.max_block_size - phase->alloc.min_block_size + 1)); 577 230 578 mem_block_t blk = alloc_block(alloc);231 mem_block_t *blk = alloc_block(alloc); 579 232 RETURN_IF_ERROR; 580 233 … … 585 238 break; 586 239 } 587 588 240 } else { 589 241 TPRINTF("A"); 590 242 fill_block(blk); 243 RETURN_IF_ERROR; 591 244 } 592 245 593 246 } else if (rnd < subphase->prob.free) { 594 mem_block_t blk = get_random_block();247 mem_block_t *blk = get_random_block(); 595 248 if (blk == NULL) { 596 249 TPRINTF("F(R)"); … … 599 252 break; 600 253 } 601 602 254 } else { 603 255 TPRINTF("R"); … … 614 266 } 615 267 616 617 static void do_phase(phase_s *phase) 268 static void do_phase(phase_t *phase) 618 269 { 619 unsigned int subno; 620 621 for (subno = 0; subno < 3; subno++) { 622 subphase_s *subphase = & phase->subphases [subno]; 270 for (unsigned int subno = 0; subno < 3; subno++) { 271 subphase_t *subphase = &phase->subphases[subno]; 623 272 624 273 TPRINTF(".. Sub-phase %u (%s)\n", subno + 1, subphase->name); … … 632 281 init_mem(); 633 282 634 unsigned int phaseno;635 for (phaseno = 0; phaseno < sizeof_array(phases);phaseno++) {636 phase_ s*phase = &phases[phaseno];283 for (unsigned int phaseno = 0; phaseno < sizeof_array(phases); 284 phaseno++) { 285 phase_t *phase = &phases[phaseno]; 637 286 638 287 TPRINTF("Entering phase %u (%s)\n", phaseno + 1, phase->name); … … 645 294 } 646 295 296 TPRINTF("Cleaning up.\n"); 297 done_mem(); 647 298 if (error_flag) 648 299 return "Test failed"; -
uspace/app/tester/tester.c
re51a514 rdf29f24 63 63 #include "mm/malloc1.def" 64 64 #include "mm/malloc2.def" 65 #include "mm/malloc3.def" 65 66 #include "mm/mapping1.def" 66 67 #include "hw/serial/serial1.def" 67 68 #include "hw/misc/virtchar1.def" 68 69 #include "devs/devman1.def" 70 #include "devs/devman2.def" 69 71 {NULL, NULL, NULL, false} 70 72 }; -
uspace/app/tester/tester.h
re51a514 rdf29f24 38 38 #include <sys/types.h> 39 39 #include <bool.h> 40 #include <stacktrace.h> 40 41 41 42 #define IPC_TEST_SERVICE 10240 … … 46 47 extern char **test_argv; 47 48 49 /** 50 * sizeof_array 51 * @array array to determine the size of 52 * 53 * Returns the size of @array in array elements. 54 */ 55 #define sizeof_array(array) \ 56 (sizeof(array) / sizeof((array)[0])) 57 48 58 #define TPRINTF(format, ...) \ 49 { \59 do { \ 50 60 if (!test_quiet) { \ 51 fprintf(stderr, format, ##__VA_ARGS__); \61 fprintf(stderr, (format), ##__VA_ARGS__); \ 52 62 } \ 53 } 63 } while (0) 64 65 #define TSTACKTRACE() \ 66 do { \ 67 if (!test_quiet) { \ 68 stacktrace_print(); \ 69 } \ 70 } while (0) 54 71 55 72 typedef const char *(*test_entry_t)(void); … … 79 96 extern const char *test_malloc1(void); 80 97 extern const char *test_malloc2(void); 98 extern const char *test_malloc3(void); 81 99 extern const char *test_mapping1(void); 82 100 extern const char *test_serial1(void); 83 101 extern const char *test_virtchar1(void); 84 102 extern const char *test_devman1(void); 103 extern const char *test_devman2(void); 85 104 86 105 extern test_t tests[]; -
uspace/drv/rootvirt/devices.def
re51a514 rdf29f24 21 21 .match_id = "virtual&test1" 22 22 }, 23 { 24 .name = "test3", 25 .match_id = "virtual&test3" 26 }, 23 27 #endif 24 28 #ifdef CONFIG_RUN_VIRTUAL_USB_HC -
uspace/lib/c/arch/ppc32/_link.ld.in
re51a514 rdf29f24 10 10 #endif 11 11 data PT_LOAD FLAGS(6); 12 debug PT_NOTE; 12 13 } 13 14 … … 55 56 } :data 56 57 58 #ifdef CONFIG_LINE_DEBUG 59 .comment 0 : { *(.comment); } :debug 60 .debug_abbrev 0 : { *(.debug_abbrev); } :debug 61 .debug_aranges 0 : { *(.debug_aranges); } :debug 62 .debug_info 0 : { *(.debug_info); } :debug 63 .debug_line 0 : { *(.debug_line); } :debug 64 .debug_loc 0 : { *(.debug_loc); } :debug 65 .debug_pubnames 0 : { *(.debug_pubnames); } :debug 66 .debug_pubtypes 0 : { *(.debug_pubtypes); } :debug 67 .debug_ranges 0 : { *(.debug_ranges); } :debug 68 .debug_str 0 : { *(.debug_str); } :debug 69 #endif 70 57 71 /DISCARD/ : { 58 72 *(*); -
uspace/lib/c/generic/assert.c
re51a514 rdf29f24 33 33 #include <assert.h> 34 34 #include <stdio.h> 35 #include <io/klog.h> 35 36 #include <stdlib.h> 37 #include <atomic.h> 36 38 #include <stacktrace.h> 39 #include <stdint.h> 40 41 static atomic_t failed_asserts = {0}; 37 42 38 43 void assert_abort(const char *cond, const char *file, unsigned int line) 39 44 { 45 /* 46 * Send the message safely to klog. Nested asserts should not occur. 47 */ 48 klog_printf("Assertion failed (%s) in file \"%s\", line %u.\n", 49 cond, file, line); 50 51 /* 52 * Check if this is a nested or parallel assert. 53 */ 54 if (atomic_postinc(&failed_asserts)) 55 abort(); 56 57 /* 58 * Attempt to print the message to standard output and display 59 * the stack trace. These operations can theoretically trigger nested 60 * assertions. 61 */ 40 62 printf("Assertion failed (%s) in file \"%s\", line %u.\n", 41 63 cond, file, line); 42 64 stacktrace_print(); 65 43 66 abort(); 44 67 } -
uspace/lib/c/generic/io/klog.c
re51a514 rdf29f24 38 38 #include <sys/types.h> 39 39 #include <unistd.h> 40 #include <errno.h> 40 41 #include <io/klog.h> 42 #include <io/printf_core.h> 41 43 42 44 size_t klog_write(const void *buf, size_t size) … … 55 57 } 56 58 59 /** Print formatted text to klog. 60 * 61 * @param fmt Format string 62 * 63 * \see For more details about format string see printf_core. 64 * 65 */ 66 int klog_printf(const char *fmt, ...) 67 { 68 va_list args; 69 va_start(args, fmt); 70 71 int ret = klog_vprintf(fmt, args); 72 73 va_end(args); 74 75 return ret; 76 } 77 78 static int klog_vprintf_str_write(const char *str, size_t size, void *data) 79 { 80 size_t wr = klog_write(str, size); 81 return str_nlength(str, wr); 82 } 83 84 static int klog_vprintf_wstr_write(const wchar_t *str, size_t size, void *data) 85 { 86 size_t offset = 0; 87 size_t chars = 0; 88 89 while (offset < size) { 90 char buf[STR_BOUNDS(1)]; 91 size_t sz = 0; 92 93 if (chr_encode(str[chars], buf, &sz, STR_BOUNDS(1)) == EOK) 94 klog_write(buf, sz); 95 96 chars++; 97 offset += sizeof(wchar_t); 98 } 99 100 return chars; 101 } 102 103 /** Print formatted text to klog. 104 * 105 * @param fmt Format string 106 * @param ap Format parameters 107 * 108 * \see For more details about format string see printf_core. 109 * 110 */ 111 int klog_vprintf(const char *fmt, va_list ap) 112 { 113 printf_spec_t ps = { 114 klog_vprintf_str_write, 115 klog_vprintf_wstr_write, 116 NULL 117 }; 118 119 return printf_core(fmt, &ps, ap); 120 } 121 57 122 /** @} 58 123 */ -
uspace/lib/c/generic/io/vprintf.c
re51a514 rdf29f24 96 96 /** Print formatted text to stdout. 97 97 * 98 * @param file Output stream 99 * @param fmt Format string 100 * @param ap Format parameters 98 * @param fmt Format string 99 * @param ap Format parameters 101 100 * 102 101 * \see For more details about format string see printf_core. -
uspace/lib/c/generic/malloc.c
re51a514 rdf29f24 65 65 #define BASE_ALIGN 16 66 66 67 /** Heap shrink granularity 68 * 69 * Try not to pump and stress the heap to much 70 * by shrinking and enlarging it too often. 71 * A heap area won't shrunk if it the released 72 * free block is smaller than this constant. 73 * 74 */ 75 #define SHRINK_GRANULARITY (64 * PAGE_SIZE) 76 67 77 /** Overhead of each heap block. */ 68 78 #define STRUCT_OVERHEAD \ 69 79 (sizeof(heap_block_head_t) + sizeof(heap_block_foot_t)) 70 80 81 /** Overhead of each area. */ 82 #define AREA_OVERHEAD(size) \ 83 (ALIGN_UP(size + sizeof(heap_area_t), BASE_ALIGN)) 84 71 85 /** Calculate real size of a heap block. 72 86 * … … 86 100 * 87 101 */ 88 #define AREA_FIRST_BLOCK (area) \102 #define AREA_FIRST_BLOCK_HEAD(area) \ 89 103 (ALIGN_UP(((uintptr_t) (area)) + sizeof(heap_area_t), BASE_ALIGN)) 104 105 /** Get last block in heap area. 106 * 107 */ 108 #define AREA_LAST_BLOCK_FOOT(area) \ 109 (((uintptr_t) (area)->end) - sizeof(heap_block_foot_t)) 110 111 /** Get header in heap block. 112 * 113 */ 114 #define BLOCK_HEAD(foot) \ 115 ((heap_block_head_t *) \ 116 (((uintptr_t) (foot)) + sizeof(heap_block_foot_t) - (foot)->size)) 90 117 91 118 /** Get footer in heap block. … … 94 121 #define BLOCK_FOOT(head) \ 95 122 ((heap_block_foot_t *) \ 96 (((uintptr_t) head) + head->size - sizeof(heap_block_foot_t)))123 (((uintptr_t) (head)) + (head)->size - sizeof(heap_block_foot_t))) 97 124 98 125 /** Heap area. … … 115 142 void *end; 116 143 144 /** Previous heap area */ 145 struct heap_area *prev; 146 117 147 /** Next heap area */ 118 148 struct heap_area *next; … … 157 187 158 188 /** Next heap block to examine (next fit algorithm) */ 159 static heap_block_head_t *next = NULL;189 static heap_block_head_t *next_fit = NULL; 160 190 161 191 /** Futex for thread-safe heap manipulation */ 162 192 static futex_t malloc_futex = FUTEX_INITIALIZER; 193 194 #ifndef NDEBUG 195 196 #define malloc_assert(expr) \ 197 do { \ 198 if (!(expr)) {\ 199 futex_up(&malloc_futex); \ 200 assert_abort(#expr, __FILE__, __LINE__); \ 201 } \ 202 } while (0) 203 204 #else /* NDEBUG */ 205 206 #define malloc_assert(expr) 207 208 #endif /* NDEBUG */ 163 209 164 210 /** Initialize a heap block … … 202 248 heap_block_head_t *head = (heap_block_head_t *) addr; 203 249 204 assert(head->magic == HEAP_BLOCK_HEAD_MAGIC);250 malloc_assert(head->magic == HEAP_BLOCK_HEAD_MAGIC); 205 251 206 252 heap_block_foot_t *foot = BLOCK_FOOT(head); 207 253 208 assert(foot->magic == HEAP_BLOCK_FOOT_MAGIC);209 assert(head->size == foot->size);254 malloc_assert(foot->magic == HEAP_BLOCK_FOOT_MAGIC); 255 malloc_assert(head->size == foot->size); 210 256 } 211 257 212 258 /** Check a heap area structure 213 259 * 260 * Should be called only inside the critical section. 261 * 214 262 * @param addr Address of the heap area. 215 263 * … … 219 267 heap_area_t *area = (heap_area_t *) addr; 220 268 221 assert(area->magic == HEAP_AREA_MAGIC); 222 assert(area->start < area->end); 223 assert(((uintptr_t) area->start % PAGE_SIZE) == 0); 224 assert(((uintptr_t) area->end % PAGE_SIZE) == 0); 269 malloc_assert(area->magic == HEAP_AREA_MAGIC); 270 malloc_assert(addr == area->start); 271 malloc_assert(area->start < area->end); 272 malloc_assert(((uintptr_t) area->start % PAGE_SIZE) == 0); 273 malloc_assert(((uintptr_t) area->end % PAGE_SIZE) == 0); 225 274 } 226 275 227 276 /** Create new heap area 228 277 * 229 * @param start Preffered starting address of the new area. 230 * @param size Size of the area. 278 * Should be called only inside the critical section. 279 * 280 * @param size Size of the area. 231 281 * 232 282 */ … … 248 298 249 299 area->start = astart; 250 area->end = (void *) 251 ALIGN_DOWN((uintptr_t) astart + asize, BASE_ALIGN);300 area->end = (void *) ((uintptr_t) astart + asize); 301 area->prev = NULL; 252 302 area->next = NULL; 253 303 area->magic = HEAP_AREA_MAGIC; 254 304 255 void *block = (void *) AREA_FIRST_BLOCK (area);305 void *block = (void *) AREA_FIRST_BLOCK_HEAD(area); 256 306 size_t bsize = (size_t) (area->end - block); 257 307 … … 262 312 last_heap_area = area; 263 313 } else { 314 area->prev = last_heap_area; 264 315 last_heap_area->next = area; 265 316 last_heap_area = area; … … 271 322 /** Try to enlarge a heap area 272 323 * 324 * Should be called only inside the critical section. 325 * 273 326 * @param area Heap area to grow. 274 * @param size Gross size of item to allocate (bytes). 327 * @param size Gross size to grow (bytes). 328 * 329 * @return True if successful. 275 330 * 276 331 */ … … 282 337 area_check(area); 283 338 284 size_t asize = ALIGN_UP((size_t) (area->end - area->start) + size,285 PAGE_SIZE);286 287 339 /* New heap area size */ 288 void *end = (void *) 289 ALIGN_DOWN((uintptr_t) area->start + asize, BASE_ALIGN); 340 size_t gross_size = (size_t) (area->end - area->start) + size; 341 size_t asize = ALIGN_UP(gross_size, PAGE_SIZE); 342 void *end = (void *) ((uintptr_t) area->start + asize); 290 343 291 344 /* Check for overflow */ … … 299 352 300 353 /* Add new free block */ 301 block_init(area->end, (size_t) (end - area->end), true, area); 354 size_t net_size = (size_t) (end - area->end); 355 if (net_size > 0) 356 block_init(area->end, net_size, true, area); 302 357 303 358 /* Update heap area parameters */ … … 309 364 /** Try to enlarge any of the heap areas 310 365 * 366 * Should be called only inside the critical section. 367 * 311 368 * @param size Gross size of item to allocate (bytes). 312 369 * … … 318 375 319 376 /* First try to enlarge some existing area */ 320 heap_area_t *area;321 for (area = first_heap_area; area != NULL;area = area->next) {377 for (heap_area_t *area = first_heap_area; area != NULL; 378 area = area->next) { 322 379 if (area_grow(area, size)) 323 380 return true; … … 325 382 326 383 /* Eventually try to create a new area */ 327 return area_create(AREA_FIRST_BLOCK(size)); 328 } 329 330 /** Try to shrink heap space 331 * 384 return area_create(AREA_OVERHEAD(size)); 385 } 386 387 /** Try to shrink heap 388 * 389 * Should be called only inside the critical section. 332 390 * In all cases the next pointer is reset. 333 391 * 334 */ 335 static void heap_shrink(void) 336 { 337 next = NULL; 392 * @param area Last modified heap area. 393 * 394 */ 395 static void heap_shrink(heap_area_t *area) 396 { 397 area_check(area); 398 399 heap_block_foot_t *last_foot = 400 (heap_block_foot_t *) AREA_LAST_BLOCK_FOOT(area); 401 heap_block_head_t *last_head = BLOCK_HEAD(last_foot); 402 403 block_check((void *) last_head); 404 malloc_assert(last_head->area == area); 405 406 if (last_head->free) { 407 /* 408 * The last block of the heap area is 409 * unused. The area might be potentially 410 * shrunk. 411 */ 412 413 heap_block_head_t *first_head = 414 (heap_block_head_t *) AREA_FIRST_BLOCK_HEAD(area); 415 416 block_check((void *) first_head); 417 malloc_assert(first_head->area == area); 418 419 size_t shrink_size = ALIGN_DOWN(last_head->size, PAGE_SIZE); 420 421 if (first_head == last_head) { 422 /* 423 * The entire heap area consists of a single 424 * free heap block. This means we can get rid 425 * of it entirely. 426 */ 427 428 heap_area_t *prev = area->prev; 429 heap_area_t *next = area->next; 430 431 if (prev != NULL) { 432 area_check(prev); 433 prev->next = next; 434 } else 435 first_heap_area = next; 436 437 if (next != NULL) { 438 area_check(next); 439 next->prev = prev; 440 } else 441 last_heap_area = prev; 442 443 as_area_destroy(area->start); 444 } else if (shrink_size >= SHRINK_GRANULARITY) { 445 /* 446 * Make sure that we always shrink the area 447 * by a multiple of page size and update 448 * the block layout accordingly. 449 */ 450 451 size_t asize = (size_t) (area->end - area->start) - shrink_size; 452 void *end = (void *) ((uintptr_t) area->start + asize); 453 454 /* Resize the address space area */ 455 int ret = as_area_resize(area->start, asize, 0); 456 if (ret != EOK) 457 abort(); 458 459 /* Update heap area parameters */ 460 area->end = end; 461 size_t excess = ((size_t) area->end) - ((size_t) last_head); 462 463 if (excess > 0) { 464 if (excess >= STRUCT_OVERHEAD) { 465 /* 466 * The previous block cannot be free and there 467 * is enough free space left in the area to 468 * create a new free block. 469 */ 470 block_init((void *) last_head, excess, true, area); 471 } else { 472 /* 473 * The excess is small. Therefore just enlarge 474 * the previous block. 475 */ 476 heap_block_foot_t *prev_foot = (heap_block_foot_t *) 477 (((uintptr_t) last_head) - sizeof(heap_block_foot_t)); 478 heap_block_head_t *prev_head = BLOCK_HEAD(prev_foot); 479 480 block_check((void *) prev_head); 481 482 block_init(prev_head, prev_head->size + excess, 483 prev_head->free, area); 484 } 485 } 486 } 487 } 488 489 next_fit = NULL; 338 490 } 339 491 … … 362 514 static void split_mark(heap_block_head_t *cur, const size_t size) 363 515 { 364 assert(cur->size >= size);516 malloc_assert(cur->size >= size); 365 517 366 518 /* See if we should split the block. */ … … 398 550 { 399 551 area_check((void *) area); 400 assert((void *) first_block >= (void *) AREA_FIRST_BLOCK(area)); 401 assert((void *) first_block < area->end); 402 403 heap_block_head_t *cur; 404 for (cur = first_block; (void *) cur < area->end; 552 malloc_assert((void *) first_block >= (void *) AREA_FIRST_BLOCK_HEAD(area)); 553 malloc_assert((void *) first_block < area->end); 554 555 for (heap_block_head_t *cur = first_block; (void *) cur < area->end; 405 556 cur = (heap_block_head_t *) (((void *) cur) + cur->size)) { 406 557 block_check(cur); … … 425 576 split_mark(cur, real_size); 426 577 427 next = cur;578 next_fit = cur; 428 579 return addr; 429 580 } else { … … 436 587 * data in (including alignment). 437 588 */ 438 if ((void *) cur > (void *) AREA_FIRST_BLOCK (area)) {589 if ((void *) cur > (void *) AREA_FIRST_BLOCK_HEAD(area)) { 439 590 /* 440 591 * There is a block before the current block. … … 477 628 split_mark(next_head, real_size); 478 629 479 next = next_head;630 next_fit = next_head; 480 631 return aligned; 481 632 } else { … … 496 647 size_t reduced_size = cur->size - excess; 497 648 cur = (heap_block_head_t *) 498 (AREA_FIRST_BLOCK (area) + excess);649 (AREA_FIRST_BLOCK_HEAD(area) + excess); 499 650 500 block_init((void *) AREA_FIRST_BLOCK (area), excess,501 true, area);651 block_init((void *) AREA_FIRST_BLOCK_HEAD(area), 652 excess, true, area); 502 653 block_init(cur, reduced_size, true, area); 503 654 split_mark(cur, real_size); 504 655 505 next = cur;656 next_fit = cur; 506 657 return aligned; 507 658 } … … 527 678 static void *malloc_internal(const size_t size, const size_t align) 528 679 { 529 assert(first_heap_area != NULL);680 malloc_assert(first_heap_area != NULL); 530 681 531 682 if (align == 0) … … 541 692 542 693 /* Try the next fit approach */ 543 split = next ;694 split = next_fit; 544 695 545 696 if (split != NULL) { … … 552 703 553 704 /* Search the entire heap */ 554 heap_area_t *area;555 for (area = first_heap_area; area != NULL;area = area->next) {705 for (heap_area_t *area = first_heap_area; area != NULL; 706 area = area->next) { 556 707 heap_block_head_t *first = (heap_block_head_t *) 557 AREA_FIRST_BLOCK (area);708 AREA_FIRST_BLOCK_HEAD(area); 558 709 559 710 void *addr = malloc_area(area, first, split, real_size, … … 652 803 653 804 block_check(head); 654 assert(!head->free);805 malloc_assert(!head->free); 655 806 656 807 heap_area_t *area = head->area; 657 808 658 809 area_check(area); 659 assert((void *) head >= (void *) AREA_FIRST_BLOCK(area));660 assert((void *) head < area->end);810 malloc_assert((void *) head >= (void *) AREA_FIRST_BLOCK_HEAD(area)); 811 malloc_assert((void *) head < area->end); 661 812 662 813 void *ptr = NULL; … … 675 826 block_init((void *) head + real_size, 676 827 orig_size - real_size, true, area); 677 heap_shrink( );828 heap_shrink(area); 678 829 } 679 830 … … 697 848 698 849 ptr = ((void *) head) + sizeof(heap_block_head_t); 699 next = NULL;850 next_fit = NULL; 700 851 } else 701 852 reloc = true; … … 729 880 730 881 block_check(head); 731 assert(!head->free);882 malloc_assert(!head->free); 732 883 733 884 heap_area_t *area = head->area; 734 885 735 886 area_check(area); 736 assert((void *) head >= (void *) AREA_FIRST_BLOCK(area));737 assert((void *) head < area->end);887 malloc_assert((void *) head >= (void *) AREA_FIRST_BLOCK_HEAD(area)); 888 malloc_assert((void *) head < area->end); 738 889 739 890 /* Mark the block itself as free. */ … … 751 902 752 903 /* Look at the previous block. If it is free, merge the two. */ 753 if ((void *) head > (void *) AREA_FIRST_BLOCK (area)) {904 if ((void *) head > (void *) AREA_FIRST_BLOCK_HEAD(area)) { 754 905 heap_block_foot_t *prev_foot = 755 906 (heap_block_foot_t *) (((void *) head) - sizeof(heap_block_foot_t)); … … 765 916 } 766 917 767 heap_shrink( );918 heap_shrink(area); 768 919 769 920 futex_up(&malloc_futex); 770 921 } 771 922 923 void *heap_check(void) 924 { 925 futex_down(&malloc_futex); 926 927 if (first_heap_area == NULL) { 928 futex_up(&malloc_futex); 929 return (void *) -1; 930 } 931 932 /* Walk all heap areas */ 933 for (heap_area_t *area = first_heap_area; area != NULL; 934 area = area->next) { 935 936 /* Check heap area consistency */ 937 if ((area->magic != HEAP_AREA_MAGIC) || 938 ((void *) area != area->start) || 939 (area->start >= area->end) || 940 (((uintptr_t) area->start % PAGE_SIZE) != 0) || 941 (((uintptr_t) area->end % PAGE_SIZE) != 0)) { 942 futex_up(&malloc_futex); 943 return (void *) area; 944 } 945 946 /* Walk all heap blocks */ 947 for (heap_block_head_t *head = (heap_block_head_t *) 948 AREA_FIRST_BLOCK_HEAD(area); (void *) head < area->end; 949 head = (heap_block_head_t *) (((void *) head) + head->size)) { 950 951 /* Check heap block consistency */ 952 if (head->magic != HEAP_BLOCK_HEAD_MAGIC) { 953 futex_up(&malloc_futex); 954 return (void *) head; 955 } 956 957 heap_block_foot_t *foot = BLOCK_FOOT(head); 958 959 if ((foot->magic != HEAP_BLOCK_FOOT_MAGIC) || 960 (head->size != foot->size)) { 961 futex_up(&malloc_futex); 962 return (void *) foot; 963 } 964 } 965 } 966 967 futex_up(&malloc_futex); 968 969 return NULL; 970 } 971 772 972 /** @} 773 973 */ -
uspace/lib/c/generic/thread.c
re51a514 rdf29f24 44 44 45 45 #ifndef THREAD_INITIAL_STACK_PAGES_NO 46 #define THREAD_INITIAL_STACK_PAGES_NO 146 #define THREAD_INITIAL_STACK_PAGES_NO 2 47 47 #endif 48 48 -
uspace/lib/c/include/adt/list.h
re51a514 rdf29f24 49 49 * 50 50 */ 51 #define LIST_INITIALIZE(name) link_t name = { \ 52 .prev = &name, \ 53 .next = &name \ 54 } 51 #define LIST_INITIALIZE(name) \ 52 link_t name = { \ 53 .prev = &name, \ 54 .next = &name \ 55 } 56 57 #define list_get_instance(link, type, member) \ 58 ((type *) (((void *)(link)) - ((void *) &(((type *) NULL)->member)))) 59 60 #define list_foreach(list, iterator) \ 61 for (link_t *iterator = (list).next; \ 62 iterator != &(list); iterator = iterator->next) 55 63 56 64 /** Initialize doubly-linked circular list link … … 71 79 * Initialize doubly-linked circular list. 72 80 * 73 * @param head Pointer to link_t structure representing head ofthe list.74 * 75 */ 76 static inline void list_initialize(link_t * head)77 { 78 head->prev = head;79 head->next = head;81 * @param list Pointer to link_t structure representing the list. 82 * 83 */ 84 static inline void list_initialize(link_t *list) 85 { 86 list->prev = list; 87 list->next = list; 80 88 } 81 89 … … 85 93 * 86 94 * @param link Pointer to link_t structure to be added. 87 * @param head Pointer to link_t structure representing head ofthe list.88 * 89 */ 90 static inline void list_prepend(link_t *link, link_t * head)91 { 92 link->next = head->next;93 link->prev = head;94 head->next->prev = link;95 head->next = link;95 * @param list Pointer to link_t structure representing the list. 96 * 97 */ 98 static inline void list_prepend(link_t *link, link_t *list) 99 { 100 link->next = list->next; 101 link->prev = list; 102 list->next->prev = link; 103 list->next = link; 96 104 } 97 105 … … 101 109 * 102 110 * @param link Pointer to link_t structure to be added. 103 * @param head Pointer to link_t structure representing head of the list. 104 * 105 */ 106 static inline void list_append(link_t *link, link_t *head) 107 { 108 link->prev = head->prev; 109 link->next = head; 110 head->prev->next = link; 111 head->prev = link; 112 } 113 114 /** Insert item before another item in doubly-linked circular list. */ 115 static inline void list_insert_before(link_t *l, link_t *r) 116 { 117 list_append(l, r); 118 } 119 120 /** Insert item after another item in doubly-linked circular list. */ 121 static inline void list_insert_after(link_t *r, link_t *l) 122 { 123 list_prepend(l, r); 111 * @param list Pointer to link_t structure representing the list. 112 * 113 */ 114 static inline void list_append(link_t *link, link_t *list) 115 { 116 link->prev = list->prev; 117 link->next = list; 118 list->prev->next = link; 119 list->prev = link; 120 } 121 122 /** Insert item before another item in doubly-linked circular list. 123 * 124 */ 125 static inline void list_insert_before(link_t *link, link_t *list) 126 { 127 list_append(link, list); 128 } 129 130 /** Insert item after another item in doubly-linked circular list. 131 * 132 */ 133 static inline void list_insert_after(link_t *link, link_t *list) 134 { 135 list_prepend(list, link); 124 136 } 125 137 … … 143 155 * Query emptiness of doubly-linked circular list. 144 156 * 145 * @param head Pointer to link_t structure representing head of the list. 146 * 147 */ 148 static inline int list_empty(link_t *head) 149 { 150 return ((head->next == head) ? 1 : 0); 157 * @param list Pointer to link_t structure representing the list. 158 * 159 */ 160 static inline int list_empty(link_t *list) 161 { 162 return (list->next == list); 163 } 164 165 /** Get head item of a list. 166 * 167 * @param list Pointer to link_t structure representing the list. 168 * 169 * @return Head item of the list. 170 * @return NULL if the list is empty. 171 * 172 */ 173 static inline link_t *list_head(link_t *list) 174 { 175 return ((list->next == list) ? NULL : list->next); 151 176 } 152 177 … … 205 230 } 206 231 207 #define list_get_instance(link, type, member) \ 208 ((type *) (((void *)(link)) - ((void *) &(((type *) NULL)->member)))) 209 210 #define list_foreach(list, iterator) \ 211 for (link_t *iterator = (list).next; \ 212 iterator != &(list); iterator = iterator->next) 232 /** Get n-th item of a list. 233 * 234 * @param list Pointer to link_t structure representing the list. 235 * @param n Item number (indexed from zero). 236 * 237 * @return n-th item of the list. 238 * @return NULL if no n-th item found. 239 * 240 */ 241 static inline link_t *list_nth(link_t *list, unsigned int n) 242 { 243 unsigned int cnt = 0; 244 245 list_foreach(*list, link) { 246 if (cnt == n) 247 return link; 248 249 cnt++; 250 } 251 252 return NULL; 253 } 213 254 214 255 extern int list_member(const link_t *, const link_t *); -
uspace/lib/c/include/as.h
re51a514 rdf29f24 59 59 extern int as_area_destroy(void *); 60 60 extern void *set_maxheapsize(size_t); 61 extern void * 61 extern void *as_get_mappable_page(size_t); 62 62 extern int as_get_physical_mapping(void *, uintptr_t *); 63 63 -
uspace/lib/c/include/io/klog.h
re51a514 rdf29f24 37 37 38 38 #include <sys/types.h> 39 #include <stdarg.h> 39 40 40 41 extern size_t klog_write(const void *, size_t); 41 42 extern void klog_update(void); 43 extern int klog_printf(const char *, ...); 44 extern int klog_vprintf(const char *, va_list); 42 45 43 46 #endif -
uspace/lib/c/include/malloc.h
re51a514 rdf29f24 46 46 extern void *realloc(const void *addr, const size_t size); 47 47 extern void free(const void *addr); 48 extern void *heap_check(void); 48 49 49 50 #endif -
uspace/lib/net/il/ip_client.c
re51a514 rdf29f24 181 181 /* Set the header */ 182 182 header = (ip_header_t *) data; 183 header->header_length = IP_COMPUTE_HEADER_LENGTH(sizeof(ip_header_t) +184 ipopt_length);183 SET_IP_HEADER_LENGTH(header, 184 (IP_COMPUTE_HEADER_LENGTH(sizeof(ip_header_t) + ipopt_length))); 185 185 header->ttl = (ttl ? ttl : IPDEFTTL); 186 186 header->tos = tos; … … 188 188 189 189 if (dont_fragment) 190 header->flags = IPFLAG_DONT_FRAGMENT;190 SET_IP_HEADER_FLAGS(header, IPFLAG_DONT_FRAGMENT); 191 191 192 192 return EOK; … … 227 227 *tos = header->tos; 228 228 if (dont_fragment) 229 *dont_fragment = header->flags& IPFLAG_DONT_FRAGMENT;229 *dont_fragment = GET_IP_HEADER_FLAGS(header) & IPFLAG_DONT_FRAGMENT; 230 230 if (ipopt_length) { 231 231 *ipopt_length = IP_HEADER_LENGTH(header) - sizeof(ip_header_t); -
uspace/lib/net/include/ip_header.h
re51a514 rdf29f24 64 64 */ 65 65 #define IP_FRAGMENT_OFFSET(header) \ 66 ((( (header)->fragment_offset_high<< 8) + \66 (((GET_IP_HEADER_FRAGMENT_OFFSET_HIGH(header) << 8) + \ 67 67 (header)->fragment_offset_low) * 8U) 68 68 … … 83 83 */ 84 84 #define IP_HEADER_LENGTH(header) \ 85 ( (header)->header_length* 4U)85 (GET_IP_HEADER_LENGTH(header) * 4U) 86 86 87 87 /** Returns the actual IP packet total length. … … 143 143 */ 144 144 struct ip_header { 145 #ifdef ARCH_IS_BIG_ENDIAN 146 uint8_t version : 4; 147 uint8_t header_length : 4; 148 #else 149 uint8_t header_length : 4; 150 uint8_t version : 4; 151 #endif 145 uint8_t vhl; /* version, header_length */ 146 147 #define GET_IP_HEADER_VERSION(header) \ 148 (((header)->vhl & 0xf0) >> 4) 149 #define SET_IP_HEADER_VERSION(header, version) \ 150 ((header)->vhl = \ 151 ((version & 0x0f) << 4) | ((header)->vhl & 0x0f)) 152 153 #define GET_IP_HEADER_LENGTH(header) \ 154 ((header)->vhl & 0x0f) 155 #define SET_IP_HEADER_LENGTH(header, length) \ 156 ((header)->vhl = \ 157 (length & 0x0f) | ((header)->vhl & 0xf0)) 152 158 153 159 uint8_t tos; … … 155 161 uint16_t identification; 156 162 157 #ifdef ARCH_IS_BIG_ENDIAN 158 uint8_t flags : 3; 159 uint8_t fragment_offset_high : 5; 160 #else 161 uint8_t fragment_offset_high : 5; 162 uint8_t flags : 3; 163 #endif 163 uint8_t ffoh; /* flags, fragment_offset_high */ 164 165 #define GET_IP_HEADER_FLAGS(header) \ 166 (((header)->ffoh & 0xe0) >> 5) 167 #define SET_IP_HEADER_FLAGS(header, flags) \ 168 ((header)->ffoh = \ 169 ((flags & 0x07) << 5) | ((header)->ffoh & 0x1f)) 170 171 #define GET_IP_HEADER_FRAGMENT_OFFSET_HIGH(header) \ 172 ((header)->ffoh & 0x1f) 173 #define SET_IP_HEADER_FRAGMENT_OFFSET_HIGH(header, fragment_offset_high) \ 174 ((header)->ffoh = \ 175 (fragment_offset_high & 0x1f) | ((header)->ffoh & 0xe0)) 164 176 165 177 uint8_t fragment_offset_low; … … 181 193 uint8_t pointer; 182 194 183 #ifdef ARCH_IS_BIG_ENDIAN 184 uint8_t overflow : 4; 185 uint8_t flags : 4; 186 #else 187 uint8_t flags : 4; 188 uint8_t overflow : 4; 189 #endif 195 uint8_t of; /* overflow, flags */ 196 197 #define GET_IP_OPTION_OVERFLOW(option) \ 198 (((option)->of & 0xf0) >> 4) 199 #define SET_IP_OPTION_OVERFLOW(option, overflow) \ 200 ((option)->of = \ 201 ((overflow & 0x0f) << 4) | ((option)->of & 0x0f)) 202 203 #define GET_IP_OPTION_FLAGS(option) \ 204 ((option)->of & 0x0f) 205 #define SET_IP_OPTION_FLAGS(option, flags) \ 206 ((option)->of = \ 207 (flags & 0x0f) | ((option)->of & 0xf0)) 208 190 209 } __attribute__ ((packed)); 191 210 -
uspace/srv/net/il/ip/ip.c
re51a514 rdf29f24 201 201 202 202 /* Set the destination address */ 203 switch ( header->version) {203 switch (GET_IP_HEADER_VERSION(header)) { 204 204 case IPVERSION: 205 205 addrlen = sizeof(dest_in); … … 635 635 636 636 /* Process all IP options */ 637 while (next < first->header_length) {637 while (next < GET_IP_HEADER_LENGTH(first)) { 638 638 option = (ip_option_t *) (((uint8_t *) first) + next); 639 639 /* Skip end or noop */ … … 656 656 if (length % 4) { 657 657 bzero(((uint8_t *) last) + length, 4 - (length % 4)); 658 last->header_length = length / 4 + 1;658 SET_IP_HEADER_LENGTH(last, (length / 4 + 1)); 659 659 } else { 660 last->header_length = length / 4;660 SET_IP_HEADER_LENGTH(last, (length / 4)); 661 661 } 662 662 … … 706 706 return rc; 707 707 708 header->version = IPV4;709 header->fragment_offset_high = 0;708 SET_IP_HEADER_VERSION(header, IPV4); 709 SET_IP_HEADER_FRAGMENT_OFFSET_HIGH(header, 0); 710 710 header->fragment_offset_low = 0; 711 711 header->header_checksum = 0; … … 735 735 memcpy(middle_header, last_header, 736 736 IP_HEADER_LENGTH(last_header)); 737 header->flags |= IPFLAG_MORE_FRAGMENTS; 737 SET_IP_HEADER_FLAGS(header, 738 (GET_IP_HEADER_FLAGS(header) | IPFLAG_MORE_FRAGMENTS)); 738 739 middle_header->total_length = 739 740 htons(packet_get_data_length(next)); 740 middle_header->fragment_offset_high =741 IP_COMPUTE_FRAGMENT_OFFSET_HIGH(length) ;741 SET_IP_HEADER_FRAGMENT_OFFSET_HIGH(middle_header, 742 IP_COMPUTE_FRAGMENT_OFFSET_HIGH(length)); 742 743 middle_header->fragment_offset_low = 743 744 IP_COMPUTE_FRAGMENT_OFFSET_LOW(length); … … 768 769 middle_header->total_length = 769 770 htons(packet_get_data_length(next)); 770 middle_header->fragment_offset_high =771 IP_COMPUTE_FRAGMENT_OFFSET_HIGH(length) ;771 SET_IP_HEADER_FRAGMENT_OFFSET_HIGH(middle_header, 772 IP_COMPUTE_FRAGMENT_OFFSET_HIGH(length)); 772 773 middle_header->fragment_offset_low = 773 774 IP_COMPUTE_FRAGMENT_OFFSET_LOW(length); … … 785 786 length += packet_get_data_length(next); 786 787 free(last_header); 787 header->flags |= IPFLAG_MORE_FRAGMENTS; 788 SET_IP_HEADER_FLAGS(header, 789 (GET_IP_HEADER_FLAGS(header) | IPFLAG_MORE_FRAGMENTS)); 788 790 } 789 791 … … 834 836 new_header->total_length = htons(IP_HEADER_LENGTH(new_header) + length); 835 837 offset = IP_FRAGMENT_OFFSET(header) + IP_HEADER_DATA_LENGTH(header); 836 new_header->fragment_offset_high =837 IP_COMPUTE_FRAGMENT_OFFSET_HIGH(offset) ;838 SET_IP_HEADER_FRAGMENT_OFFSET_HIGH(new_header, 839 IP_COMPUTE_FRAGMENT_OFFSET_HIGH(offset)); 838 840 new_header->fragment_offset_low = 839 841 IP_COMPUTE_FRAGMENT_OFFSET_LOW(offset); … … 865 867 return NULL; 866 868 memcpy(middle, last, IP_HEADER_LENGTH(last)); 867 middle->flags |= IPFLAG_MORE_FRAGMENTS; 869 SET_IP_HEADER_FLAGS(middle, 870 (GET_IP_HEADER_FLAGS(middle) | IPFLAG_MORE_FRAGMENTS)); 868 871 return middle; 869 872 } … … 922 925 923 926 /* Fragmentation forbidden? */ 924 if( header->flags& IPFLAG_DONT_FRAGMENT)927 if(GET_IP_HEADER_FLAGS(header) & IPFLAG_DONT_FRAGMENT) 925 928 return EPERM; 926 929 … … 958 961 959 962 /* Mark the first as fragmented */ 960 header->flags |= IPFLAG_MORE_FRAGMENTS; 963 SET_IP_HEADER_FLAGS(header, 964 (GET_IP_HEADER_FLAGS(header) | IPFLAG_MORE_FRAGMENTS)); 961 965 962 966 /* Create middle fragments */ … … 1319 1323 int rc; 1320 1324 1321 if (( header->flags& IPFLAG_MORE_FRAGMENTS) ||1325 if ((GET_IP_HEADER_FLAGS(header) & IPFLAG_MORE_FRAGMENTS) || 1322 1326 IP_FRAGMENT_OFFSET(header)) { 1323 1327 // TODO fragmented … … 1325 1329 } 1326 1330 1327 switch ( header->version) {1331 switch (GET_IP_HEADER_VERSION(header)) { 1328 1332 case IPVERSION: 1329 1333 addrlen = sizeof(src_in); … … 1447 1451 1448 1452 /* Set the destination address */ 1449 switch ( header->version) {1453 switch (GET_IP_HEADER_VERSION(header)) { 1450 1454 case IPVERSION: 1451 1455 addrlen = sizeof(addr_in); -
uspace/srv/net/tl/tcp/tcp.c
re51a514 rdf29f24 476 476 old_incoming = socket_data->next_incoming; 477 477 478 if ( header->finalize) {478 if (GET_TCP_HEADER_FINALIZE(header)) { 479 479 socket_data->fin_incoming = new_sequence_number + 480 480 total_length - TCP_HEADER_LENGTH(header); … … 838 838 assert(packet); 839 839 840 if (! header->synchronize)840 if (!GET_TCP_HEADER_SYNCHRONIZE(header)) 841 841 return tcp_release_and_return(packet, EINVAL); 842 842 … … 903 903 assert(packet); 904 904 905 if (! header->synchronize)905 if (!GET_TCP_HEADER_SYNCHRONIZE(header)) 906 906 return tcp_release_and_return(packet, EINVAL); 907 907 … … 1057 1057 assert(packet); 1058 1058 1059 if (! header->acknowledge)1059 if (!GET_TCP_HEADER_ACKNOWLEDGE(header)) 1060 1060 return tcp_release_and_return(packet, EINVAL); 1061 1061 … … 1126 1126 assert(header); 1127 1127 1128 if (! header->acknowledge)1128 if (!GET_TCP_HEADER_ACKNOWLEDGE(header)) 1129 1129 return; 1130 1130 … … 1833 1833 1834 1834 /* Remember the outgoing FIN */ 1835 if ( header->finalize)1835 if (GET_TCP_HEADER_FINALIZE(header)) 1836 1836 socket_data->fin_outgoing = socket_data->next_outgoing; 1837 1837 … … 1952 1952 header->acknowledgement_number = 1953 1953 htonl(socket_data->next_incoming); 1954 header->acknowledge = 1;1954 SET_TCP_HEADER_ACKNOWLEDGE(header, 1); 1955 1955 } 1956 1956 header->window = htons(socket_data->window); … … 2024 2024 header->source_port = htons(socket->port); 2025 2025 header->source_port = htons(socket_data->dest_port); 2026 header->header_length = TCP_COMPUTE_HEADER_LENGTH(sizeof(*header)); 2027 header->synchronize = synchronize; 2028 header->finalize = finalize; 2026 SET_TCP_HEADER_LENGTH(header, 2027 TCP_COMPUTE_HEADER_LENGTH(sizeof(*header))); 2028 SET_TCP_HEADER_SYNCHRONIZE(header, synchronize); 2029 SET_TCP_HEADER_FINALIZE(header, finalize); 2029 2030 } 2030 2031 -
uspace/srv/net/tl/tcp/tcp_header.h
re51a514 rdf29f24 47 47 * @param[in] header The TCP packet header. 48 48 */ 49 #define TCP_HEADER_LENGTH(header) ( (header)->header_length* 4U)49 #define TCP_HEADER_LENGTH(header) (GET_TCP_HEADER_LENGTH(header) * 4U) 50 50 51 51 /** Returns the TCP header length. … … 73 73 uint32_t sequence_number; 74 74 uint32_t acknowledgement_number; 75 76 #ifdef ARCH_IS_BIG_ENDIAN77 uint8_t header_length:4;78 uint8_t reserved1:4;79 #else80 uint8_t reserved1:4;81 uint8_t header_length:4;82 #endif83 75 84 #ifdef ARCH_IS_BIG_ENDIAN 85 uint8_t reserved2:2; 86 uint8_t urgent:1; 87 uint8_t acknowledge:1; 88 uint8_t push:1; 89 uint8_t reset:1; 90 uint8_t synchronize:1; 91 uint8_t finalize:1; 92 #else 93 uint8_t finalize:1; 94 uint8_t synchronize:1; 95 uint8_t reset:1; 96 uint8_t push:1; 97 uint8_t acknowledge:1; 98 uint8_t urgent:1; 99 uint8_t reserved2:2; 100 #endif 76 uint8_t hlr; /* header length, reserved1 */ 77 78 #define GET_TCP_HEADER_LENGTH(header) \ 79 (((header)->hlr & 0xf0) >> 4) 80 #define SET_TCP_HEADER_LENGTH(header, length) \ 81 ((header)->hlr = \ 82 ((length & 0x0f) << 4) | ((header)->hlr & 0x0f)) 83 84 #define GET_TCP_HEADER_RESERVED1(header) \ 85 ((header)->hlr & 0x0f) 86 #define SET_TCP_HEADER_RESERVED1(header, reserved1) \ 87 ((header)->hlr = \ 88 (reserved1 & 0x0f) | ((header)->hlr & 0xf0)) 89 90 /* reserved2, urgent, acknowledge, push, reset, synchronize, finalize */ 91 uint8_t ruaprsf; 92 93 #define GET_TCP_HEADER_RESERVED2(header) \ 94 (((header)->ruaprsf & 0xc0) >> 6) 95 #define SET_TCP_HEADER_RESERVED2(header, reserved2) \ 96 ((header)->ruaprsf = \ 97 ((reserved2 & 0x03) << 6) | ((header)->ruaprsf & 0x3f)) 98 99 #define GET_TCP_HEADER_URGENT(header) \ 100 (((header)->ruaprsf & 0x20) >> 5) 101 #define SET_TCP_HEADER_URGENT(header, urgent) \ 102 ((header)->ruaprsf = \ 103 ((urgent & 0x01) << 5) | ((header)->ruaprsf & 0xdf)) 104 105 #define GET_TCP_HEADER_ACKNOWLEDGE(header) \ 106 (((header)->ruaprsf & 0x10) >> 4) 107 #define SET_TCP_HEADER_ACKNOWLEDGE(header, acknowledge) \ 108 ((header)->ruaprsf = \ 109 ((acknowledge & 0x01) << 4) | ((header)->ruaprsf & 0xef)) 110 111 #define GET_TCP_HEADER_PUSH(header) \ 112 (((header)->ruaprsf & 0x08) >> 3) 113 #define SET_TCP_HEADER_PUSH(header, push) \ 114 ((header)->ruaprsf = \ 115 ((push & 0x01) << 3) | ((header)->ruaprsf & 0xf7)) 116 117 #define GET_TCP_HEADER_RESET(header) \ 118 (((header)->ruaprsf & 0x04) >> 2) 119 #define SET_TCP_HEADER_RESET(header, reset) \ 120 ((header)->ruaprsf = \ 121 ((reset & 0x01) << 2) | ((header)->ruaprsf & 0xfb)) 122 123 #define GET_TCP_HEADER_SYNCHRONIZE(header) \ 124 (((header)->ruaprsf & 0x02) >> 1) 125 #define SET_TCP_HEADER_SYNCHRONIZE(header, synchronize) \ 126 ((header)->ruaprsf = \ 127 ((synchronize & 0x01) << 1) | ((header)->ruaprsf & 0xfd)) 128 129 #define GET_TCP_HEADER_FINALIZE(header) \ 130 ((header)->ruaprsf & 0x01) 131 #define SET_TCP_HEADER_FINALIZE(header, finalize) \ 132 ((header)->ruaprsf = \ 133 (finalize & 0x01) | ((header)->ruaprsf & 0xfe)) 101 134 102 135 uint16_t window; -
uspace/srv/vfs/vfs.h
re51a514 rdf29f24 176 176 vfs_pair_t *, ...); 177 177 extern int vfs_open_node_internal(vfs_lookup_res_t *); 178 extern int vfs_close_internal(vfs_file_t *);179 178 180 179 extern bool vfs_nodes_init(void); -
uspace/srv/vfs/vfs_file.c
re51a514 rdf29f24 79 79 for (i = 0; i < MAX_OPEN_FILES; i++) { 80 80 if (FILES[i]) { 81 (void) vfs_close_internal(FILES[i]);82 81 (void) vfs_fd_free(i); 83 82 } … … 108 107 } 109 108 109 /** Close the file in the endpoint FS server. */ 110 static int vfs_file_close_remote(vfs_file_t *file) 111 { 112 ipc_call_t answer; 113 aid_t msg; 114 sysarg_t rc; 115 int phone; 116 117 assert(!file->refcnt); 118 119 phone = vfs_grab_phone(file->node->fs_handle); 120 msg = async_send_2(phone, VFS_OUT_CLOSE, file->node->devmap_handle, 121 file->node->index, &answer); 122 async_wait_for(msg, &rc); 123 vfs_release_phone(file->node->fs_handle, phone); 124 125 return IPC_GET_ARG1(answer); 126 } 127 128 110 129 /** Increment reference count of VFS file structure. 111 130 * … … 125 144 * decremented. 126 145 */ 127 static void vfs_file_delref(vfs_file_t *file) 128 { 146 static int vfs_file_delref(vfs_file_t *file) 147 { 148 int rc = EOK; 149 129 150 assert(fibril_mutex_is_locked(&VFS_DATA->lock)); 130 151 131 152 if (file->refcnt-- == 1) { 132 153 /* 133 * Lost the last reference to a file, need to drop our reference134 * to the underlying VFS node.154 * Lost the last reference to a file, need to close it in the 155 * endpoint FS and drop our reference to the underlying VFS node. 135 156 */ 157 rc = vfs_file_close_remote(file); 136 158 vfs_node_delref(file->node); 137 159 free(file); 138 160 } 161 162 return rc; 139 163 } 140 164 … … 201 225 int vfs_fd_free(int fd) 202 226 { 227 int rc; 228 203 229 if (!vfs_files_init()) 204 230 return ENOMEM; … … 210 236 } 211 237 212 vfs_file_delref(FILES[fd]);238 rc = vfs_file_delref(FILES[fd]); 213 239 FILES[fd] = NULL; 214 240 fibril_mutex_unlock(&VFS_DATA->lock); 215 241 216 return EOK;242 return rc; 217 243 } 218 244 -
uspace/srv/vfs/vfs_ops.c
re51a514 rdf29f24 717 717 } 718 718 719 int vfs_close_internal(vfs_file_t *file)720 {721 /*722 * Lock the open file structure so that no other thread can manipulate723 * the same open file at a time.724 */725 fibril_mutex_lock(&file->lock);726 727 if (file->refcnt <= 1) {728 /* Only close the file on the destination FS server729 if there are no more file descriptors (except the730 present one) pointing to this file. */731 732 int fs_phone = vfs_grab_phone(file->node->fs_handle);733 734 /* Make a VFS_OUT_CLOSE request at the destination FS server. */735 aid_t msg;736 ipc_call_t answer;737 msg = async_send_2(fs_phone, VFS_OUT_CLOSE,738 file->node->devmap_handle, file->node->index, &answer);739 740 /* Wait for reply from the FS server. */741 sysarg_t rc;742 async_wait_for(msg, &rc);743 744 vfs_release_phone(file->node->fs_handle, fs_phone);745 fibril_mutex_unlock(&file->lock);746 747 return IPC_GET_ARG1(answer);748 }749 750 fibril_mutex_unlock(&file->lock);751 return EOK;752 }753 754 719 void vfs_close(ipc_callid_t rid, ipc_call_t *request) 755 720 { 756 721 int fd = IPC_GET_ARG1(*request); 757 758 /* Lookup the file structure corresponding to the file descriptor. */ 759 vfs_file_t *file = vfs_file_get(fd); 760 if (!file) { 761 async_answer_0(rid, ENOENT); 762 return; 763 } 764 765 int ret = vfs_close_internal(file); 766 if (ret != EOK) 767 async_answer_0(rid, ret); 768 769 vfs_file_put(file); 722 int ret; 723 770 724 ret = vfs_fd_free(fd); 771 725 async_answer_0(rid, ret); … … 1369 1323 fibril_mutex_lock(&oldfile->lock); 1370 1324 1371 /* Lookup an open file structure possibly corresponding to newfd. */ 1372 vfs_file_t *newfile = vfs_file_get(newfd); 1373 if (newfile) { 1374 /* Close the originally opened file. */ 1375 int ret = vfs_close_internal(newfile); 1376 if (ret != EOK) { 1377 fibril_mutex_unlock(&oldfile->lock); 1378 vfs_file_put(oldfile); 1379 vfs_file_put(newfile); 1380 async_answer_0(rid, ret); 1381 return; 1382 } 1383 1384 ret = vfs_fd_free(newfd); 1385 if (ret != EOK) { 1386 fibril_mutex_unlock(&oldfile->lock); 1387 vfs_file_put(oldfile); 1388 vfs_file_put(newfile); 1389 async_answer_0(rid, ret); 1390 return; 1391 } 1392 vfs_file_put(newfile); 1393 } 1325 /* Make sure newfd is closed. */ 1326 (void) vfs_fd_free(newfd); 1394 1327 1395 1328 /* Assign the old file to newfd. */
Note:
See TracChangeset
for help on using the changeset viewer.