Ignore:
File:
1 edited

Legend:

Unmodified
Added
Removed
  • uspace/lib/c/generic/time.c

    r3e6a98c5 rfbcdeb8  
    11/*
    22 * Copyright (c) 2006 Ondrej Palkovsky
    3  * Copyright (c) 2011 Petr Koupy
    4  * Copyright (c) 2011 Jiri Zarevucky
    53 * All rights reserved.
    64 *
     
    3735#include <sys/time.h>
    3836#include <time.h>
    39 #include <stdbool.h>
     37#include <bool.h>
    4038#include <libarch/barrier.h>
    4139#include <macros.h>
     
    4543#include <ddi.h>
    4644#include <libc.h>
    47 #include <stdint.h>
    48 #include <stdio.h>
    49 #include <ctype.h>
    50 #include <assert.h>
    51 #include <unistd.h>
    52 #include <loc.h>
    53 #include <device/clock_dev.h>
    54 #include <malloc.h>
    55 
    56 #define ASCTIME_BUF_LEN 26
    5745
    5846/** Pointer to kernel shared variables with time */
     
    6351} *ktime = NULL;
    6452
    65 /* Helper functions ***********************************************************/
    66 
    67 #define HOURS_PER_DAY (24)
    68 #define MINS_PER_HOUR (60)
    69 #define SECS_PER_MIN (60)
    70 #define MINS_PER_DAY (MINS_PER_HOUR * HOURS_PER_DAY)
    71 #define SECS_PER_HOUR (SECS_PER_MIN * MINS_PER_HOUR)
    72 #define SECS_PER_DAY (SECS_PER_HOUR * HOURS_PER_DAY)
    73 
    74 /**
    75  * Checks whether the year is a leap year.
    76  *
    77  * @param year Year since 1900 (e.g. for 1970, the value is 70).
    78  * @return true if year is a leap year, false otherwise
    79  */
    80 static bool _is_leap_year(time_t year)
    81 {
    82         year += 1900;
    83 
    84         if (year % 400 == 0)
    85                 return true;
    86         if (year % 100 == 0)
    87                 return false;
    88         if (year % 4 == 0)
    89                 return true;
    90         return false;
    91 }
    92 
    93 /**
    94  * Returns how many days there are in the given month of the given year.
    95  * Note that year is only taken into account if month is February.
    96  *
    97  * @param year Year since 1900 (can be negative).
    98  * @param mon Month of the year. 0 for January, 11 for December.
    99  * @return Number of days in the specified month.
    100  */
    101 static int _days_in_month(time_t year, time_t mon)
    102 {
    103         assert(mon >= 0 && mon <= 11);
    104 
    105         static int month_days[] =
    106                 { 31, 0, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
    107 
    108         if (mon == 1) {
    109                 year += 1900;
    110                 /* february */
    111                 return _is_leap_year(year) ? 29 : 28;
    112         } else {
    113                 return month_days[mon];
    114         }
    115 }
    116 
    117 /**
    118  * For specified year, month and day of month, returns which day of that year
    119  * it is.
    120  *
    121  * For example, given date 2011-01-03, the corresponding expression is:
    122  *     _day_of_year(111, 0, 3) == 2
    123  *
    124  * @param year Year (year 1900 = 0, can be negative).
    125  * @param mon Month (January = 0).
    126  * @param mday Day of month (First day is 1).
    127  * @return Day of year (First day is 0).
    128  */
    129 static int _day_of_year(time_t year, time_t mon, time_t mday)
    130 {
    131         static int mdays[] =
    132             { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
    133         static int leap_mdays[] =
    134             { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335 };
    135 
    136         return (_is_leap_year(year) ? leap_mdays[mon] : mdays[mon]) + mday - 1;
    137 }
    138 
    139 /**
    140  * Integer division that rounds to negative infinity.
    141  * Used by some functions in this file.
    142  *
    143  * @param op1 Dividend.
    144  * @param op2 Divisor.
    145  * @return Rounded quotient.
    146  */
    147 static time_t _floor_div(time_t op1, time_t op2)
    148 {
    149         if (op1 >= 0 || op1 % op2 == 0) {
    150                 return op1 / op2;
    151         } else {
    152                 return op1 / op2 - 1;
    153         }
    154 }
    155 
    156 /**
    157  * Modulo that rounds to negative infinity.
    158  * Used by some functions in this file.
    159  *
    160  * @param op1 Dividend.
    161  * @param op2 Divisor.
    162  * @return Remainder.
    163  */
    164 static time_t _floor_mod(time_t op1, time_t op2)
    165 {
    166         int div = _floor_div(op1, op2);
    167 
    168         /* (a / b) * b + a % b == a */
    169         /* thus, a % b == a - (a / b) * b */
    170 
    171         int result = op1 - div * op2;
    172        
    173         /* Some paranoid checking to ensure I didn't make a mistake here. */
    174         assert(result >= 0);
    175         assert(result < op2);
    176         assert(div * op2 + result == op1);
    177        
    178         return result;
    179 }
    180 
    181 /**
    182  * Number of days since the Epoch.
    183  * Epoch is 1970-01-01, which is also equal to day 0.
    184  *
    185  * @param year Year (year 1900 = 0, may be negative).
    186  * @param mon Month (January = 0).
    187  * @param mday Day of month (first day = 1).
    188  * @return Number of days since the Epoch.
    189  */
    190 static time_t _days_since_epoch(time_t year, time_t mon, time_t mday)
    191 {
    192         return (year - 70) * 365 + _floor_div(year - 69, 4) -
    193             _floor_div(year - 1, 100) + _floor_div(year + 299, 400) +
    194             _day_of_year(year, mon, mday);
    195 }
    196 
    197 /**
    198  * Seconds since the Epoch. see also _days_since_epoch().
    199  *
    200  * @param tm Normalized broken-down time.
    201  * @return Number of seconds since the epoch, not counting leap seconds.
    202  */
    203 static time_t _secs_since_epoch(const struct tm *tm)
    204 {
    205         return _days_since_epoch(tm->tm_year, tm->tm_mon, tm->tm_mday) *
    206             SECS_PER_DAY + tm->tm_hour * SECS_PER_HOUR +
    207             tm->tm_min * SECS_PER_MIN + tm->tm_sec;
    208 }
    209 
    210 /**
    211  * Which day of week the specified date is.
    212  *
    213  * @param year Year (year 1900 = 0).
    214  * @param mon Month (January = 0).
    215  * @param mday Day of month (first = 1).
    216  * @return Day of week (Sunday = 0).
    217  */
    218 static int _day_of_week(time_t year, time_t mon, time_t mday)
    219 {
    220         /* 1970-01-01 is Thursday */
    221         return _floor_mod((_days_since_epoch(year, mon, mday) + 4), 7);
    222 }
    223 
    224 /**
    225  * Normalizes the broken-down time and optionally adds specified amount of
    226  * seconds.
    227  *
    228  * @param tm Broken-down time to normalize.
    229  * @param sec_add Seconds to add.
    230  * @return 0 on success, -1 on overflow
    231  */
    232 static int _normalize_time(struct tm *tm, time_t sec_add)
    233 {
    234         // TODO: DST correction
    235 
    236         /* Set initial values. */
    237         time_t sec = tm->tm_sec + sec_add;
    238         time_t min = tm->tm_min;
    239         time_t hour = tm->tm_hour;
    240         time_t day = tm->tm_mday - 1;
    241         time_t mon = tm->tm_mon;
    242         time_t year = tm->tm_year;
    243 
    244         /* Adjust time. */
    245         min += _floor_div(sec, SECS_PER_MIN);
    246         sec = _floor_mod(sec, SECS_PER_MIN);
    247         hour += _floor_div(min, MINS_PER_HOUR);
    248         min = _floor_mod(min, MINS_PER_HOUR);
    249         day += _floor_div(hour, HOURS_PER_DAY);
    250         hour = _floor_mod(hour, HOURS_PER_DAY);
    251 
    252         /* Adjust month. */
    253         year += _floor_div(mon, 12);
    254         mon = _floor_mod(mon, 12);
    255 
    256         /* Now the difficult part - days of month. */
    257        
    258         /* First, deal with whole cycles of 400 years = 146097 days. */
    259         year += _floor_div(day, 146097) * 400;
    260         day = _floor_mod(day, 146097);
    261        
    262         /* Then, go in one year steps. */
    263         if (mon <= 1) {
    264                 /* January and February. */
    265                 while (day > 365) {
    266                         day -= _is_leap_year(year) ? 366 : 365;
    267                         year++;
    268                 }
    269         } else {
    270                 /* Rest of the year. */
    271                 while (day > 365) {
    272                         day -= _is_leap_year(year + 1) ? 366 : 365;
    273                         year++;
    274                 }
    275         }
    276        
    277         /* Finally, finish it off month per month. */
    278         while (day >= _days_in_month(year, mon)) {
    279                 day -= _days_in_month(year, mon);
    280                 mon++;
    281                 if (mon >= 12) {
    282                         mon -= 12;
    283                         year++;
    284                 }
    285         }
    286        
    287         /* Calculate the remaining two fields. */
    288         tm->tm_yday = _day_of_year(year, mon, day + 1);
    289         tm->tm_wday = _day_of_week(year, mon, day + 1);
    290        
    291         /* And put the values back to the struct. */
    292         tm->tm_sec = (int) sec;
    293         tm->tm_min = (int) min;
    294         tm->tm_hour = (int) hour;
    295         tm->tm_mday = (int) day + 1;
    296         tm->tm_mon = (int) mon;
    297        
    298         /* Casts to work around libc brain-damage. */
    299         if (year > ((int)INT_MAX) || year < ((int)INT_MIN)) {
    300                 tm->tm_year = (year < 0) ? ((int)INT_MIN) : ((int)INT_MAX);
    301                 return -1;
    302         }
    303        
    304         tm->tm_year = (int) year;
    305         return 0;
    306 }
    307 
    308 /**
    309  * Which day the week-based year starts on, relative to the first calendar day.
    310  * E.g. if the year starts on December 31st, the return value is -1.
    311  *
    312  * @param Year since 1900.
    313  * @return Offset of week-based year relative to calendar year.
    314  */
    315 static int _wbyear_offset(int year)
    316 {
    317         int start_wday = _day_of_week(year, 0, 1);
    318         return _floor_mod(4 - start_wday, 7) - 3;
    319 }
    320 
    321 /**
    322  * Returns week-based year of the specified time.
    323  *
    324  * @param tm Normalized broken-down time.
    325  * @return Week-based year.
    326  */
    327 static int _wbyear(const struct tm *tm)
    328 {
    329         int day = tm->tm_yday - _wbyear_offset(tm->tm_year);
    330         if (day < 0) {
    331                 /* Last week of previous year. */
    332                 return tm->tm_year - 1;
    333         }
    334         if (day > 364 + _is_leap_year(tm->tm_year)) {
    335                 /* First week of next year. */
    336                 return tm->tm_year + 1;
    337         }
    338         /* All the other days are in the calendar year. */
    339         return tm->tm_year;
    340 }
    341 
    342 /**
    343  * Week number of the year, assuming weeks start on sunday.
    344  * The first Sunday of January is the first day of week 1;
    345  * days in the new year before this are in week 0.
    346  *
    347  * @param tm Normalized broken-down time.
    348  * @return The week number (0 - 53).
    349  */
    350 static int _sun_week_number(const struct tm *tm)
    351 {
    352         int first_day = (7 - _day_of_week(tm->tm_year, 0, 1)) % 7;
    353         return (tm->tm_yday - first_day + 7) / 7;
    354 }
    355 
    356 /**
    357  * Week number of the year, assuming weeks start on monday.
    358  * If the week containing January 1st has four or more days in the new year,
    359  * then it is considered week 1. Otherwise, it is the last week of the previous
    360  * year, and the next week is week 1. Both January 4th and the first Thursday
    361  * of January are always in week 1.
    362  *
    363  * @param tm Normalized broken-down time.
    364  * @return The week number (1 - 53).
    365  */
    366 static int _iso_week_number(const struct tm *tm)
    367 {
    368         int day = tm->tm_yday - _wbyear_offset(tm->tm_year);
    369         if (day < 0) {
    370                 /* Last week of previous year. */
    371                 return 53;
    372         }
    373         if (day > 364 + _is_leap_year(tm->tm_year)) {
    374                 /* First week of next year. */
    375                 return 1;
    376         }
    377         /* All the other days give correct answer. */
    378         return (day / 7 + 1);
    379 }
    380 
    381 /**
    382  * Week number of the year, assuming weeks start on monday.
    383  * The first Monday of January is the first day of week 1;
    384  * days in the new year before this are in week 0.
    385  *
    386  * @param tm Normalized broken-down time.
    387  * @return The week number (0 - 53).
    388  */
    389 static int _mon_week_number(const struct tm *tm)
    390 {
    391         int first_day = (1 - _day_of_week(tm->tm_year, 0, 1)) % 7;
    392         return (tm->tm_yday - first_day + 7) / 7;
    393 }
    394 
    395 /******************************************************************************/
    396 
    397 
    39853/** Add microseconds to given timeval.
    39954 *
     
    483138 */
    484139int gettimeofday(struct timeval *tv, struct timezone *tz)
    485 {
    486         int rc;
    487         struct tm t;
    488         category_id_t cat_id;
    489         size_t svc_cnt;
    490         service_id_t *svc_ids = NULL;
    491         service_id_t svc_id;
    492         char *svc_name = NULL;
    493 
    494         static async_sess_t *clock_conn = NULL;
    495 
    496         if (tz) {
    497                 tz->tz_minuteswest = 0;
    498                 tz->tz_dsttime = DST_NONE;
    499         }
    500 
    501         if (clock_conn == NULL) {
    502                 rc = loc_category_get_id("clock", &cat_id, IPC_FLAG_BLOCKING);
    503                 if (rc != EOK)
    504                         goto ret_uptime;
    505 
    506                 rc = loc_category_get_svcs(cat_id, &svc_ids, &svc_cnt);
    507                 if (rc != EOK)
    508                         goto ret_uptime;
    509 
    510                 if (svc_cnt == 0)
    511                         goto ret_uptime;
    512 
    513                 rc = loc_service_get_name(svc_ids[0], &svc_name);
    514                 if (rc != EOK)
    515                         goto ret_uptime;
    516 
    517                 rc = loc_service_get_id(svc_name, &svc_id, 0);
    518                 if (rc != EOK)
    519                         goto ret_uptime;
    520 
    521                 clock_conn = loc_service_connect(EXCHANGE_SERIALIZE,
    522                     svc_id, IPC_FLAG_BLOCKING);
    523                 if (!clock_conn)
    524                         goto ret_uptime;
    525         }
    526 
    527         rc = clock_dev_time_get(clock_conn, &t);
    528         if (rc != EOK)
    529                 goto ret_uptime;
    530 
    531         tv->tv_usec = 0;
    532         tv->tv_sec = mktime(&t);
    533 
    534         free(svc_name);
    535         free(svc_ids);
    536 
    537         return EOK;
    538 
    539 ret_uptime:
    540 
    541         free(svc_name);
    542         free(svc_ids);
    543 
    544         return getuptime(tv);
    545 }
    546 
    547 int getuptime(struct timeval *tv)
    548140{
    549141        if (ktime == NULL) {
     
    567159        }
    568160       
     161        if (tz) {
     162                tz->tz_minuteswest = 0;
     163                tz->tz_dsttime = DST_NONE;
     164        }
     165       
    569166        sysarg_t s2 = ktime->seconds2;
    570167       
     
    580177        } else
    581178                tv->tv_sec = s1;
    582 
     179       
    583180        return 0;
    584181}
     
    631228}
    632229
    633 /**
    634  * This function first normalizes the provided broken-down time
    635  * (moves all values to their proper bounds) and then tries to
    636  * calculate the appropriate time_t representation.
    637  *
    638  * @param tm Broken-down time.
    639  * @return time_t representation of the time, undefined value on overflow.
    640  */
    641 time_t mktime(struct tm *tm)
    642 {
    643         // TODO: take DST flag into account
    644         // TODO: detect overflow
    645 
    646         _normalize_time(tm, 0);
    647         return _secs_since_epoch(tm);
    648 }
    649 
    650 /**
    651  * Convert time and date to a string, based on a specified format and
    652  * current locale.
    653  *
    654  * @param s Buffer to write string to.
    655  * @param maxsize Size of the buffer.
    656  * @param format Format of the output.
    657  * @param tm Broken-down time to format.
    658  * @return Number of bytes written.
    659  */
    660 size_t strftime(char *restrict s, size_t maxsize,
    661     const char *restrict format, const struct tm *restrict tm)
    662 {
    663         assert(s != NULL);
    664         assert(format != NULL);
    665         assert(tm != NULL);
    666 
    667         // TODO: use locale
    668         static const char *wday_abbr[] = {
    669                 "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
    670         };
    671         static const char *wday[] = {
    672                 "Sunday", "Monday", "Tuesday", "Wednesday",
    673                 "Thursday", "Friday", "Saturday"
    674         };
    675         static const char *mon_abbr[] = {
    676                 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
    677                 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
    678         };
    679         static const char *mon[] = {
    680                 "January", "February", "March", "April", "May", "June", "July",
    681                 "August", "September", "October", "November", "December"
    682         };
    683        
    684         if (maxsize < 1) {
    685                 return 0;
    686         }
    687        
    688         char *ptr = s;
    689         size_t consumed;
    690         size_t remaining = maxsize;
    691        
    692         #define append(...) { \
    693                 /* FIXME: this requires POSIX-correct snprintf */ \
    694                 /*        otherwise it won't work with non-ascii chars */ \
    695                 consumed = snprintf(ptr, remaining, __VA_ARGS__); \
    696                 if (consumed >= remaining) { \
    697                         return 0; \
    698                 } \
    699                 ptr += consumed; \
    700                 remaining -= consumed; \
    701         }
    702        
    703         #define recurse(fmt) { \
    704                 consumed = strftime(ptr, remaining, fmt, tm); \
    705                 if (consumed == 0) { \
    706                         return 0; \
    707                 } \
    708                 ptr += consumed; \
    709                 remaining -= consumed; \
    710         }
    711        
    712         #define TO_12H(hour) (((hour) > 12) ? ((hour) - 12) : \
    713             (((hour) == 0) ? 12 : (hour)))
    714        
    715         while (*format != '\0') {
    716                 if (*format != '%') {
    717                         append("%c", *format);
    718                         format++;
    719                         continue;
    720                 }
    721                
    722                 format++;
    723                 if (*format == '0' || *format == '+') {
    724                         // TODO: padding
    725                         format++;
    726                 }
    727                 while (isdigit(*format)) {
    728                         // TODO: padding
    729                         format++;
    730                 }
    731                 if (*format == 'O' || *format == 'E') {
    732                         // TODO: locale's alternative format
    733                         format++;
    734                 }
    735                
    736                 switch (*format) {
    737                 case 'a':
    738                         append("%s", wday_abbr[tm->tm_wday]); break;
    739                 case 'A':
    740                         append("%s", wday[tm->tm_wday]); break;
    741                 case 'b':
    742                         append("%s", mon_abbr[tm->tm_mon]); break;
    743                 case 'B':
    744                         append("%s", mon[tm->tm_mon]); break;
    745                 case 'c':
    746                         // TODO: locale-specific datetime format
    747                         recurse("%Y-%m-%d %H:%M:%S"); break;
    748                 case 'C':
    749                         append("%02d", (1900 + tm->tm_year) / 100); break;
    750                 case 'd':
    751                         append("%02d", tm->tm_mday); break;
    752                 case 'D':
    753                         recurse("%m/%d/%y"); break;
    754                 case 'e':
    755                         append("%2d", tm->tm_mday); break;
    756                 case 'F':
    757                         recurse("%+4Y-%m-%d"); break;
    758                 case 'g':
    759                         append("%02d", _wbyear(tm) % 100); break;
    760                 case 'G':
    761                         append("%d", _wbyear(tm)); break;
    762                 case 'h':
    763                         recurse("%b"); break;
    764                 case 'H':
    765                         append("%02d", tm->tm_hour); break;
    766                 case 'I':
    767                         append("%02d", TO_12H(tm->tm_hour)); break;
    768                 case 'j':
    769                         append("%03d", tm->tm_yday); break;
    770                 case 'k':
    771                         append("%2d", tm->tm_hour); break;
    772                 case 'l':
    773                         append("%2d", TO_12H(tm->tm_hour)); break;
    774                 case 'm':
    775                         append("%02d", tm->tm_mon); break;
    776                 case 'M':
    777                         append("%02d", tm->tm_min); break;
    778                 case 'n':
    779                         append("\n"); break;
    780                 case 'p':
    781                         append("%s", tm->tm_hour < 12 ? "AM" : "PM"); break;
    782                 case 'P':
    783                         append("%s", tm->tm_hour < 12 ? "am" : "PM"); break;
    784                 case 'r':
    785                         recurse("%I:%M:%S %p"); break;
    786                 case 'R':
    787                         recurse("%H:%M"); break;
    788                 case 's':
    789                         append("%ld", _secs_since_epoch(tm)); break;
    790                 case 'S':
    791                         append("%02d", tm->tm_sec); break;
    792                 case 't':
    793                         append("\t"); break;
    794                 case 'T':
    795                         recurse("%H:%M:%S"); break;
    796                 case 'u':
    797                         append("%d", (tm->tm_wday == 0) ? 7 : tm->tm_wday);
    798                         break;
    799                 case 'U':
    800                         append("%02d", _sun_week_number(tm)); break;
    801                 case 'V':
    802                         append("%02d", _iso_week_number(tm)); break;
    803                 case 'w':
    804                         append("%d", tm->tm_wday); break;
    805                 case 'W':
    806                         append("%02d", _mon_week_number(tm)); break;
    807                 case 'x':
    808                         // TODO: locale-specific date format
    809                         recurse("%Y-%m-%d"); break;
    810                 case 'X':
    811                         // TODO: locale-specific time format
    812                         recurse("%H:%M:%S"); break;
    813                 case 'y':
    814                         append("%02d", tm->tm_year % 100); break;
    815                 case 'Y':
    816                         append("%d", 1900 + tm->tm_year); break;
    817                 case 'z':
    818                         // TODO: timezone
    819                         break;
    820                 case 'Z':
    821                         // TODO: timezone
    822                         break;
    823                 case '%':
    824                         append("%%");
    825                         break;
    826                 default:
    827                         /* Invalid specifier, print verbatim. */
    828                         while (*format != '%') {
    829                                 format--;
    830                         }
    831                         append("%%");
    832                         break;
    833                 }
    834                 format++;
    835         }
    836        
    837         #undef append
    838         #undef recurse
    839        
    840         return maxsize - remaining;
    841 }
    842 
    843 
    844 /** Converts a time value to a broken-down UTC time
    845  *
    846  * @param time    Time to convert
    847  * @param result  Structure to store the result to
    848  *
    849  * @return        EOK or a negative error code
    850  */
    851 int time_utc2tm(const time_t time, struct tm *restrict result)
    852 {
    853         assert(result != NULL);
    854 
    855         /* Set result to epoch. */
    856         result->tm_sec = 0;
    857         result->tm_min = 0;
    858         result->tm_hour = 0;
    859         result->tm_mday = 1;
    860         result->tm_mon = 0;
    861         result->tm_year = 70; /* 1970 */
    862 
    863         if (_normalize_time(result, time) == -1)
    864                 return EOVERFLOW;
    865 
    866         return EOK;
    867 }
    868 
    869 /** Converts a time value to a null terminated string of the form
    870  *  "Wed Jun 30 21:49:08 1993\n" expressed in UTC.
    871  *
    872  * @param time   Time to convert.
    873  * @param buf    Buffer to store the string to, must be at least
    874  *               ASCTIME_BUF_LEN bytes long.
    875  *
    876  * @return       EOK or a negative error code.
    877  */
    878 int time_utc2str(const time_t time, char *restrict buf)
    879 {
    880         struct tm t;
    881         int r;
    882 
    883         if ((r = time_utc2tm(time, &t)) != EOK)
    884                 return r;
    885 
    886         time_tm2str(&t, buf);
    887         return EOK;
    888 }
    889 
    890 
    891 /**
    892  * Converts broken-down time to a string in format
    893  * "Sun Jan 1 00:00:00 1970\n". (Obsolete)
    894  *
    895  * @param timeptr Broken-down time structure.
    896  * @param buf     Buffer to store string to, must be at least ASCTIME_BUF_LEN
    897  *                bytes long.
    898  */
    899 void time_tm2str(const struct tm *restrict timeptr, char *restrict buf)
    900 {
    901         assert(timeptr != NULL);
    902         assert(buf != NULL);
    903 
    904         static const char *wday[] = {
    905                 "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
    906         };
    907         static const char *mon[] = {
    908                 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
    909                 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
    910         };
    911 
    912         snprintf(buf, ASCTIME_BUF_LEN, "%s %s %2d %02d:%02d:%02d %d\n",
    913             wday[timeptr->tm_wday],
    914             mon[timeptr->tm_mon],
    915             timeptr->tm_mday, timeptr->tm_hour,
    916             timeptr->tm_min, timeptr->tm_sec,
    917             1900 + timeptr->tm_year);
    918 }
    919 
    920 /**
    921  * Converts a time value to a broken-down local time, expressed relative
    922  * to the user's specified timezone.
    923  *
    924  * @param timer     Time to convert.
    925  * @param result    Structure to store the result to.
    926  *
    927  * @return          EOK on success or a negative error code.
    928  */
    929 int time_local2tm(const time_t time, struct tm *restrict result)
    930 {
    931         // TODO: deal with timezone
    932         // currently assumes system and all times are in GMT
    933 
    934         /* Set result to epoch. */
    935         result->tm_sec = 0;
    936         result->tm_min = 0;
    937         result->tm_hour = 0;
    938         result->tm_mday = 1;
    939         result->tm_mon = 0;
    940         result->tm_year = 70; /* 1970 */
    941 
    942         if (_normalize_time(result, time) == -1)
    943                 return EOVERFLOW;
    944 
    945         return EOK;
    946 }
    947 
    948 /**
    949  * Converts the calendar time to a null terminated string
    950  * of the form "Wed Jun 30 21:49:08 1993\n" expressed relative to the
    951  * user's specified timezone.
    952  *
    953  * @param timer  Time to convert.
    954  * @param buf    Buffer to store the string to. Must be at least
    955  *               ASCTIME_BUF_LEN bytes long.
    956  *
    957  * @return       EOK on success or a negative error code.
    958  */
    959 int time_local2str(const time_t time, char *buf)
    960 {
    961         struct tm loctime;
    962         int r;
    963 
    964         if ((r = time_local2tm(time, &loctime)) != EOK)
    965                 return r;
    966 
    967         time_tm2str(&loctime, buf);
    968 
    969         return EOK;
    970 }
    971 
    972 /**
    973  * Calculate the difference between two times, in seconds.
    974  *
    975  * @param time1 First time.
    976  * @param time0 Second time.
    977  * @return Time in seconds.
    978  */
    979 double difftime(time_t time1, time_t time0)
    980 {
    981         return (double) (time1 - time0);
    982 }
    983 
    984230/** @}
    985231 */
Note: See TracChangeset for help on using the changeset viewer.